The prediction of the grinding process result, such as the workpiece surface quality or the state of the edge zone depending on the used grinding wheel is still a great challenge for today's manufacturers and users of grinding tools. This is mainly caused by an inadequate predictability of force and temperature affecting the process. The force and the temperature strongly depend on the topography of the grinding wheel, which comes into contact with the workpiece during the grinding process. The topography of a grinding wheel mainly depends on the structure of the grinding wheel, which is determined by the recipe-dependent volumetric composition of the tool. So, the structure of a grinding tool determines its application behavior strongly. As result, the knowledge-based prediction of the grinding wheel topography and its influence on the machining behavior will only be possible if the recipe-dependent grinding wheel structure is known. This paper presents an innovative approach for modeling the grinding wheel structure and the resultant grinding wheel topography. The overall objective of the underlying research work was to create a mathematical-generic grinding tool model in which the spatial arrangement of the components, grains, bond, and pores, is simulated in a realistic manner starting from the recipe-dependent volumetric composition of a grinding wheel. This model enables the user to determine the resulting grinding wheel structure and the grinding wheel topography of vitrified and synthetic resin-bonded cubic boron nitride (CBN) grinding wheels depending on their specification and thus to predict their application behavior. The originality of the present research results is a generic approach for the modeling of grinding tools, which takes into account the entire grinding wheel structure to build up the topography. Therefore, original mathematical methods are used. The components of grinding wheels are analyzed, and distribution functions of the component's positions in the tools are determined. Thus, the statistical character of the grinding wheel structure is taken into account in the developed model. In future, the presented model opens new perspectives in order to optimize and to increase the productivity of grinding processes.

References

1.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
Ann. CIRP
,
41
(
2
), pp.
677
688
.
2.
Doman
,
D. A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2006
, “
A Survey of Recent Grinding Wheel Topography Models
,”
Int. J. Mach. Tools Manuf.
,
46
(3–4), pp.
343
352
.
3.
Brinksmeier
,
E.
,
Govekar
,
E.
,
Weinert
,
K.
,
Uhlmann
,
E.
,
Aurich
,
J. C.
,
Rentsch
,
R.
,
Stephenson
,
D. J.
,
Heinzel
,
C.
,
Hoffmeister
,
H.-W.
,
Peters
,
J.
,
Wittmann
,
M.
, and
Klocke
,
F.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
Ann. CIRP
,
55
(
2
), pp.
667
696
.
4.
Heinzel
,
C.
,
2009
, “
Schleifprozesse verstehen: Zum Stand der Modellbildung und Simulation sowie unterstützender experimenteller Methoden
,” Forschungsberichte aus der Stiftung Institut für Werkstofftechnik, Universität Bremen, Bremen, Germany.
5.
Hegemann
,
J.
,
2000
, “
Fundamentals of Grinding: Surface Conditions of Ground Materials
,”
Ph.D. thesis
, Rijksuniversiteit Groningen, Groningen, The Netherlands.http://www.rug.nl/research/portal/publications/fundamentals-of-grinding(a761abef-4054-438f-9387-c3f426b2cbd0).html
6.
Koshy
,
P.
,
Lewis
,
K. I.
, and
Jahanmir
,
S.
,
1999
, “
Simulation of Diamond-Ground Surfaces
,”
Int. J. Mach. Tools Manuf.
,
39
(
9
), pp.
1451
1470
.
7.
Zitt
,
U. R.
,
1999
, “
Modellierung und Simulation von Hochleistungsschleifprozessen
,” Ph.D. dissertation, Universität Kaiserslautern, Kaiserslautern, Germany.
8.
Aurich
,
J. C.
,
Linke
,
B.
,
Hauschild
,
M.
,
Carrella
,
M.
, and
Kirsch
,
B.
,
2013
, “
Sustainability of Abrasive Processes
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
653
672
.
9.
Pinto
,
F. W.
,
Vargas
,
G. E.
, and
Wegener
,
K.
,
2008
, “
Simulation for Optimizing Grain Pattern on Engineered Grinding Tools
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
353
356
.
10.
Rausch
,
S.
,
Siebrecht
,
T.
,
Kersting
,
P.
, and
Biermann
,
D.
,
2014
, “
Analysis and Simulation of Surface Topographies in Grinding of Thermally Sprayed Coatings
,”
AMR
,
1018
, pp.
91
98
.
11.
Klocke
,
F.
,
Barth
,
S.
,
Wrobel
,
C.
,
Weiß
,
M.
,
Mattfeld
,
P.
,
Brakhage
,
K.-H.
, and
Rom
,
M.
,
2016
, “
Modelling of the Grinding Wheel Structure Depending on the Volumetric Composition
,”
Proc. CIRP
,
46
, pp.
276
280
.
12.
Weiß
,
M.
,
2016
,
Einfluss der Spezifikation mehrschichtiger CBN-Schleifwerkzeuge auf das Schleifprozessverhalten (Specification Influence of Multilayer CBN-Grinding Wheels on the Grinding Process Behaviour)
, 1st ed.,
Apprimus Verlag
,
Aachen, Germany
.
13.
Si
,
H.
,
2015
, “
TetGen, A Delaunay-Based Quality Tetrahedral Mesh Generator
,”
ACM Trans. Math. Software
,
41
(
2
), pp.
1
36
.
14.
Pietsch
,
W.
,
Rumpf
,
H.
, and
Haftkraft
,
K.
,
1967
, “
Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugeln
,”
Chem. Ing. Tech.
,
39
(
15
), pp.
885
936
.
15.
Stabenow
,
R.
,
2016
, “
Härtewirksame Effekte bei Schleifscheiben
,”
Tagungsband European Conference on Grinding
, Aachen, Germany, Nov. 29–30, pp.
1
5
.
16.
Rom
,
M.
,
Brakhage
,
K. H.
,
Barth
,
S.
,
Wrobel
,
C.
,
Mattfeld
,
P.
, and
Klocke
,
F.
,
2017
, “
Mathematical Modeling of Ceramic Bond Bridges in Grinding Wheels
,”
Math. Comput. Simul.
, epub.
17.
Blunt
,
L. A.
, and
Ebdon
,
S.
,
1996
, “
The Application of Three-Dimensional Surface Measurement Techniques to Characterizing Grinding Wheel Topographie
,”
Int. J. Mach. Tools Manuf.
,
36
(
11
), pp.
1207
1226
.
18.
Erleben
,
K.
,
Dohlmann
,
H.
, and
Sporring
,
J.
,
2005
, “
The Adaptive Thin Shell Tetrahedral Mesh
,”
J. WSCG
,
13
, pp.
17
24
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.2098&rep=rep1&type=pdf
19.
Rasim
,
M.
,
2016
,
Modellierung der Wärmeentstehung im Schleifprozess in Abhängigkeit von der Schleifscheibentopographie
, 1st ed.,
Apprimus Verlag
,
Aachen, Germany
.
20.
Kassen
,
G.
, and
Werner
,
G.
,
1969
, “
Kinematische Kenngrößen des Schleifvorganges
,”
Industrieanzeiger
,
91
(
87
), pp.
2087
2090
.
You do not currently have access to this content.