In this paper, we develop and apply feature extraction and selection techniques to classify tool wear in the gear shaving process. Because shaving tool condition monitoring is not well-studied, we extract both traditional and novel features from accelerometer signals collected from the shaving machine. We then apply a heuristic feature selection technique to identify key features and classify the tool condition. Run-to-life data from a shop-floor application is used to validate the proposed technique.
Issue Section:
Research Papers
References
1.
U. S. C. T. Institute
, 1989
, Metal Cutting Tool Handbook
, 7th ed., Industrial Press
, New York
.2.
Klocke
, F.
, and Schroder
, T.
, “Gear Shaving: Simulation and Technological Studies
,” ASME
Paper No. DETC2003/PTG-48033.3.
Hung
, C.
, Liu
, J.
, Chang
, S.
, and Lin
, H.
, 2007
, “Simulation of Gear Shaving With Considerations of Cutter Assembly Errors and Machine Setting Parameters
,” Int. J. Adv. Manuf. Technol.
, 35
(3–4
), pp. 400
–407
.4.
Lv
, M.
, and Yang
, X.
, 2002
, “Design and Manufacture of a Shaving Cutter With Unequal Depth Gashes
,” J. Mater. Process. Technol.
, 129
(1–3
), pp. 193
–195
.5.
Brzezinski
, A. J.
, Wang
, Y.
, Choi
, D. K.
, Qiao
, X.
, and Ni
, J.
, 2008
, “Feature-Based Tool Condition Monitoring in a Gear Shaving Application
,” ASME
Paper No. MSEC_ICMP2008-72297.6.
Elbestawi
, M. A.
, Papazafifiou
, T. A.
, and Du
, R. X.
, 1991
, “In-Process Monitoring of Tool Wear in Milling Using Cutting Force Signature
,” Int. J. Mach. Tools Manuf.
, 31
(1
), pp. 55
–73
.7.
Jardine
, A. K. S.
, Lin
, D.
, and Banjevic
, D.
, 2006
, “A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,” Mech. Syst. Signal Process.
, 20
(7
), pp. 1483
–1510
.8.
Wang
, L.
, and Gao
, R. X.
, 2006
, Condition Monitoring and Control for Intelligent Manufacturing
, Springer
, London
.9.
Zakrajsek
, J. J.
, and Lewicki
, D. G.
, 1998
, “Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture
,” Tribo Test
, 4
(4
), pp. 407
–422
.10.
Yu
, D.
, Yang
, Y.
, and Cheng
, J.
, 2007
, “Application of Time-Frequency Entropy Method Based on Hilbert-Huang Transform to Gear Fault Diagnosis
,” Measurement
, 40
(9–10
), pp. 823
–830
.11.
Wang
, Y.
, Li
, L.
, Ni
, J.
, and Huang
, S.
, 2009
, “Feature Selection Using Tabu Search With Long-Term Memories and Probabilistic Neural Networks
,” Pattern Recognit. Lett.
, 30
(7
), pp. 661
–670
.12.
Pudil
, P.
, Novovicova
, J.
, and Kittler
, J.
, 1994
, “Floating Search Methods in Feature Selection
,” Pattern Recognit. Lett.
, 15
(11
), pp. 1119
–1125
.13.
Siedlecki
, W.
, and Sklansky
, J.
, 1989
, “A Note on Genetic Algorithms for Large-Scale Feature Selection
,” Pattern Recognit. Lett.
, 10
(11
), pp. 335
–347
.14.
Rafiee
, J.
, Arvani
, F.
, Harifi
, A.
, and Sadeghi
, M. H.
, 2007
, “Intelligent Condition Monitoring of a Gearbox Using Artificial Neural Network
,” Mech. Syst. Signal Process.
, 21
(4
), pp. 1746
–1754
.15.
Du
, R. X.
, Elbestawi
, M. A.
, and Li
, S.
, 1992
, “Tool Condition Monitoring in Turning Using Fuzzy Set Theory
,” Int. J. Mach. Tools Manuf.
, 32
(6
), pp. 781
–796
.16.
Guyon
, I.
, and Elisseeff
, A.
, 2003
, “An Introduction to Variable and Feature Selection
,” J. Mach. Learn. Res.
, 3
(7–8
), pp. 1157
–1182
.17.
Bell
, A.
, and Sejnowski
, T.
, 1997
, “The ‘Independent Components' of Natural Scenes are Edge Filters
,” Vision Res.
, 37
(23
), pp. 3327
–3338
.18.
Specht
, D. F.
, 1990
, “Probabilistic Neural Networks
,” Neural Networks
, 3
(1
), pp. 109
–118
.Copyright © 2017 by ASME
You do not currently have access to this content.