In the grinding process, high temperature in grinding area is generated by the frictional resistance between workpiece and abrasive grains on the grinding wheel cylindrical surface. Grinding fluid application is an optimal option to reduce the thermal effect and crack on the workpiece ground surface. In this paper, a grinding process heat transfer model with various grinding fluid application is introduced based on computational fluid dynamics (CFD) methodology. The effect of specific heat, viscosity, and surface tension of grinding fluid are taken into account. In the model, the grinding contact area is considered as a heating resource. Most of the heat energy is conducted into the workpiece. The rest of the energy is taken away by the grinding wheel, grinding fluid, and chips. How many percentage of the generated heat is conducted into the workpiece is a key issue, namely, the energy partition ratio ε. An energy partition equation is introduced in this paper with the cooling effect of different grinding fluid. Generated heat energy based on the calculation from energy partition equation is applied on the grinding contact area in the heat transfer model.

References

1.
Ramanath
,
S.
, and
Shaw
,
M. C.
,
1988
, “
Abrasive Grain Temperature at the Beginning of a Cut in Fine Grinding
,”
ASME J. Eng. Ind.
,
110
(
1
), pp.
15
18
.
2.
He
,
Q.
,
Fu
,
Y.
,
Chen
,
J.
, and
Zhang
,
W.
,
2016
, “
Investigation on Heat Transfer Performance of Heat Pipe Grinding Wheel in Dry Grinding
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111009
.
3.
Shao
,
Y.
,
Fergani
,
O.
,
Ding
,
Z.
,
Li
,
B.
, and
Liang
,
S. Y.
,
2015
, “
Experimental Investigation of Residual Stress in Minimum Quantity Lubrication Grinding of AISI 1018 Steel
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011009
.
4.
Outwater
,
J. O.
, and
Shaw
,
M. C.
,
1952
, “
Surface Temperatures in Grinding
,”
Trans. ASME
,
74
, pp.
73
78
.
5.
Hahn
,
R. S.
,
1962
, “
On the Nature of the Grinding Process
,”
Third Machine Tool Design and Research Conference
, Birmingham, UK, Sept., Vol.
1
, pp.
129
154
.
6.
Rowe
,
W. B.
,
Pettit
,
J. A.
, and
Boyle
,
A.
,
1988
, “
Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold
,”
Ann. CIRP
,
37
(
1
), pp.
327
330
.
7.
Rowe
,
W. B.
,
Black
,
S.
, and
Mills
,
B.
,
1997
, “
Grinding Temperatures and Energy Partitioning
,”
Proc. R. Soc. A
,
453
(
1
), pp.
1083
1104
.
8.
Rowe
,
W. B.
,
Morgan
,
M. N.
, and
Black
,
S.
,
1996
, “
A Simplified Approach to Thermal Damage in Grinding
,”
Ann. CIRP
,
45
(
1
), pp.
299
302
.
9.
Rowe
,
W. B.
,
Black
,
S.
, and
Mills
,
B.
,
1996
, “
Analysis of Grinding Temperatures by Energy Partitioning
,”
Proc. Inst. Mech. Eng.
,
210
(
6
), pp.
579
588
.
10.
Guo
,
C.
,
Wu
,
Y.
, and
Varghese
,
V.
,
1999
, “
Temperatures and Energy Partition for Grinding With Vitrified CBN Wheels
,”
Ann. CIRP
,
48
(
1
), pp.
247
250
.
11.
Guo
,
C.
, and
Malkin
,
S.
,
1992
, “
Heat Transfer in Grinding
,”
J. Mater. Process. Manuf. Sci.
,
1
(
1
), pp.
16
27
.
12.
Guo
,
C.
, and
Malkin
,
S.
,
1996
, “
Inverse Heat Transfer Analysis of Heat Flux to the Workpiece—Part 2: Application
,”
ASME J. Eng. Ind.
,
118
(
1
), pp.
143
149
.
13.
Lavine
,
A. S.
,
1988
, “
A Simple Model for Convective Cooling During the Grinding Process
,”
ASME J. Eng. Ind.
,
110
(
1
), pp.
1
6
.
14.
Lavine
,
A. S.
, and
Malkin
,
S.
,
1989
, “
Thermal Aspects of Grinding With CBN Wheels
,”
Ann. CIRP
,
38
(
1
), pp.
557
560
.
15.
Li
,
H. N.
, and
Axinte
,
D.
,
2017
, “
On a Stochastically Grain-Discretised Model for 2D/3D Temperature Mapping Prediction in Grinding
,”
Int. J. Mach. Tools Manuf.
,
116
, pp.
60
76
.
16.
Hada
,
M.
, and
Sadeghi
,
B.
,
2012
, “
Thermal Analysis of Minimum Quantity Lubrication-MQL Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
1
15
.
17.
Nguyen
,
T.
, and
Zhang
,
L. C.
,
2010
, “
Grinding–Hardening Using Dry Air and Liquid Nitrogen: Prediction and Verification of Temperature Fields and Hardened Layer Thickness
,”
Int. J. Mach. Tools Manuf.
,
50
(
10
), pp.
901
910
.
18.
Marinescu
,
I. D.
,
Hitchiner
,
M.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasaki
,
I.
,
2006
,
Handbook of Machining With Grinding Wheels
, CRC Press, Boca Raton, FL.
19.
Malkin
,
S.
,
1989
,
Grinding Technology: Theory and Applications of Machining With Abrasives
, Society of Manufacturing Engineers, Dearborn, MI.
20.
Yin
,
G.
,
Nisal
,
T. V.
,
Bugtai
,
N. T.
, and
Marinescu
,
I. D.
,
2014
, “
Monitoring the Parameter Effects of Surface Grinding Process Using Temperature, Acoustic Emission and Force Measurement
,”
ASME
Paper No. MSEC2014-3969.
21.
Schindler
,
F.
,
Brocker
,
R.
,
Klocke
,
F.
, and
Mattfeld
,
P.
,
2015
, “
A Discussion on Removal Mechanisms in Grinding Polycrystalline Diamond
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011002
.
22.
ANSYS, 2011
, “
ANSYS 14.0 FLUENT Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
23.
Mihić
,
S. D.
, and
Cioc
,
S.
,
2011
, “
3-D CFD Parametric Study of the Impact of the Fluid Properties and Delivery Conditions on Flow and Heat Transfer in Grinding
,”
Adv. Mater. Res.
,
325
, pp.
225
230
.
24.
Yin
,
G.
,
Marinescu
,
I. D.
, and
Weismiller
,
M. C.
,
2016
, “
Grinding Force Performance With Different Types of Grinding Fluids Based on a Semi-Empirical Force Model
,”
Int. J. Abrasive Technol.
,
7
(
3
), pp.
167
186
.
25.
Yin
,
G.
,
2015
, “
Theoretical-Experimental Study of Fluid Delivery and Heat Management in Grinding
,”
Ph.D. thesis
, University of Toledo, Toledo, OH.http://utdr.utoledo.edu/theses-dissertations/1929/
You do not currently have access to this content.