Developing a bead shape to process parameter model is challenging due to the multiparameter, nonlinear, and dynamic nature of the laser cladding (LC) environment. This introduces unique predictive modeling challenges for both single bead and overlapping bead configurations. It is essential to develop predictive models for both as the boundary conditions for overlapping beads are different from a single bead configuration. A single bead model provides insight with respect to the process characteristics. An overlapping model is relevant for process planning and travel path generation for surface cladding operations. Complementing the modeling challenges is the development of a framework and methodologies to minimize experimental data collection while maximizing the goodness of fit for the predictive models for additional experimentation and modeling. To facilitate this, it is important to understand the key process parameters, the predictive model methodologies, and data structures. Two modeling methods are employed to develop predictive models: analysis of variance (ANOVA), and a generalized reduced gradient (GRG) approach. To assist with process parameter solutions and to provide an initial value for nonlinear model seeding, data clustering is performed to identify characteristic bead shape families. This research illustrates good predictive models can be generated using multiple approaches.

References

1.
Gebhardt
,
A.
,
2003
,
Rapid Prototyping
, 1st ed.,
Hanser Gardner Publications
,
Cincinatti, OH
, Chap. 1.
2.
Hedrick
,
R. W.
, and
Urbanic
,
R. J.
,
2014
, “
Integration of Additive Manufacturing and Virtual Verification Stretegies Within a Commercial CAM System
,”
Comput. Aided Des. Appl.
,
10
(
4
), pp.
567
583
.
3.
Aggarwal
,
K.
,
Urbanic
,
R. J.
, and
Saqib
,
S.
,
2014
, “
Identifying Relative Importance of Input Parameters in Developing Predictive Model for Laser Clading Process
,”
International Mechanical Engineering Congress and Exposition-ASME
, Montreal, QC, Canada, Vol.
2A
, p.
12
.
4.
Jichang
,
L.
, and
Lijun
,
L.
,
2005
, “
Study on Cross Section Clad Profile in Coaxial Single Pass Cladding With a Low-Power Optics and Laser Technology
,”
Opt. Laser Technol.
,
37
(
6
), pp.
478
482
.
5.
Lee
,
H.-K.
,
2008
, “
Effects of the Cladding Parameters on the Deposition Efficiency in Pulsed Nd:YAG Laser Cladding
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
321
327
.
6.
Sun
,
Y.
, and
Hao
,
M.
,
2012
, “
Statistical Analysis and Optimization of Process Parameters in Ti6Al4V Laser Cladding Using Nd:YAG Laser
,”
Opt. Lasers Eng.
,
50
(
7
), pp.
985
995
.
7.
Komvopoulos
,
K.
, and
Nagarathnam
,
K.
,
1990
, “
Processing and Characterization of Laser-Cladded Coating Materials
,”
Eng. Mater. Technol.
,
112
(
2
), pp.
131
143
.
8.
Schneider
,
M.
,
1998
, “
Laser Cladding With Powder: Effect of Some Machining Parameters on Clad Properties
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.
9.
Toyserkani
,
E.
,
Khajepor
,
A.
, and
Corbin
,
S.
,
2004
,
Laser Cladding
,
CRC Press
,
Boca Raton, FL
, Chap. 1.
10.
Dasgupta
,
E. B.
, and
Mukherjee
,
S.
,
2013
, “
Optimization of Weld Bead Parameters of Nickel Based Overlay Deposited By Plasma Transferred Arc Surfacing
,”
Int. J. Mod. Eng. Res.
,
3
(
3
), pp.
1330
1335
.
11.
Oliveira
,
U.
,
Ocelík
,
V.
, and
De Hosson
,
J. T.
,
2005
, “
Analysis of Coaxial Laser Cladding Processing Conditions
,”
Surf. Coat. Technol.
,
197
(
2–3
), pp.
127
136
.
12.
Davim
,
J. P.
,
Olivera
,
C.
, and
Cardosa
,
A.
,
2006
, “
Experimental Study of Geometric Form and Hardness of Coating Using Statistical Analysis
,”
ASME J. Eng. Manuf.
,
220
(
9
), pp.
1549
1554
.
13.
Jichang
,
L.
, and
Libni
,
L.
,
2011
, “
The Prediction of Laser Clad Parameters Based on Neural Network
,”
Adv. Mater. Process.
,
27
(
1
), pp.
279
284
.
14.
Weishiet
,
A.
,
Backes
,
G.
,
Stromeyer
,
R.
, and
Poprawe
,
R.
,
2002
, “
Powder Injection: The Key to Reconditioning and Generating Components Using Laser Cladding
,”
International Congress on Advanced Materials, Their Processes and Applications Conference
, Munich, Germany, Oct. 1–4, p.
8
.
15.
Radstok
,
E.
,
1998
, “
Rapid Tooling
,”
Rapid Prototyping J.
,
5
(
4
), pp.
164
168
.
16.
Fallah
,
V.
,
Corbin
,
S.
, and
Khajepour
,
A.
,
2010
, “
Process Optimization of Ti–Nb Alloy Coatings on a Ti–6Al–4V Plate Using a Fiber Laser and Blended Elemental Powders
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
2081
2087
.
17.
Aggarwal
,
K.
,
2014
, “
Investigation of Laser Clad Bead Geometry to Process Parameter Configuration for Tool Path Generation, Simulation and Optimization
,”
MSc thesis
, University of Windsor, Windsor, ON, Canada.
18.
Ding
,
D.
,
Zengxi
,
P.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Amulti-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM)
,”
Rob. Comput.-Integr. Manuf.
,
31
, pp.
101
110
.
19.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
, 7th ed.,
Wiley
,
Hoboken, NJ
, pp.
417
485
.
20.
Ermurat
,
M.
,
Arslan
,
M.
,
Erzincanli
,
F.
, and
Uzman
,
I.
,
2013
, “
Process Parameters Investigation of a Laser-Generated Single Clad for Minimum Size Using Design of Experiments
,”
Rapid Prototyping J.
,
19
(
6
), pp.
452
462
.
21.
Saqib
,
S.
,
Urbanic
,
R. J.
, and
Aggarwal
,
K.
,
2014
, “
Analysis of Laser Cladding Bead Morphology for Developing Additive Manufacturing Travel Paths
,”
Proc. CIRP
,
17
, pp.
824
829
.
22.
Gernjak
,
D. W.
,
2006
, “
Solar Photo-Fenton Treatment of EU Priority Substances-Process Parameters and Control Strategies
,” Ph.D. thesis, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
23.
Hibbert
,
D. B.
,
2012
, “
Experimental Design in Chromatography: A Tutorial Review
,”
J. Chromatogr. B. Anal. Technol. Biomed. Life Sci.
,
910
, pp.
2
13
.
24.
Kumar
,
M.
,
Verma
,
S.
, and
Singh
,
P.
,
2008
, “
Data Clustering in Sensor Networks Using ART
,” 4th International
IEEE
Conference on Wireless Communication and Sensor Networks
, Allahabad, India, Dec. 27–29, pp.
51
56
.
25.
Abidi
,
S. S. R.
, and
Ong
,
J.
,
2000
, “
A Data Mining Strategy for Inductive Data Clustering: A Synergy Between Self-Organising Neural Networks and K-Means Clustering Techniques
,”
Conference Proceedings
TENCON
, Kuala Lumpur, Malaysia, Vol.
2
, pp.
568
573
.
26.
Alam
,
S.
,
Dobbie
,
G.
,
Koh
,
Y.
, and
Riddle
,
P.
,
2013
, “
Clustering Heterogeneous Web Usage Data Using Hierarchical Particle Swarm Optimization
,”
IEEE
Conference Symposium of Swarm Intelligent
, Singapore, Apr. 16–19, pp.
147
154
.
27.
Jiawei
,
H.
,
Kamber
,
M.
, and
Pei
,
J.
,
2012
,
Data Mining: Concepts and Techniques
, 3rd ed.,
Morgan Kaufman Publishers
,
Waltham, MA
.
28.
Schmid
,
C.
, and
Hinterberger
,
H.
,
1994
, “
Comparative Multivariate Visualization Across Conceptually Different Graphic Displays
,”
7th International Working Conference on Scientific and Statistical Database Management
, IEEE Computer Society, Charlottesville, VA, Sept. 28–30, pp.
42
51
.
29.
Siirtola
,
H.
, and
Makinen
,
E.
,
2005
, “
Constructing and Reconstructing the Reorderable Matrix
,”
Inf. Visualization
,
4
(
1
), pp.
32
48
.
30.
Chen
,
J.
,
MacEachren
,
A. M.
, and
Peuquet
,
D. J.
,
2009
, “
Constructing Overview + Detail Dendrogram-Matrix Views
,”
IEEE Trans. Visualization Comput. Graphics
,
15
(
6
), pp.
889
896
.
31.
Samarasinghe
,
S.
,
2006
,
Neural Networks for Applied Sciences and Engineering—From Fundamentals to Complex Pattern Recognition
,
Auerbach Publications/Taylor and Francis Group
,
New York/Boca Raton, FL
.
You do not currently have access to this content.