Multiscale signal decomposition represents an important step to enhance process monitoring results in many manufacturing applications. Empirical mode decomposition (EMD) is a data driven technique that gained an increasing interest in this framework. However, it usually yields an-over decomposition of the signal, leading to the generation of spurious and meaningless modes and the possible mixing of embedded modes. This study proposes an enhanced signal decomposition approach that synthetizes the original information content into a minimal number of relevant modes via a data-driven and automated procedure. A criterion based on the kernel estimation of density functions is proposed to estimate the dissimilarities between the intrinsic modes generated by the EMD, together with a methodology to automatically determine the optimal number of final modes. The performances of the method are demonstrated by means of simulated signals and real industrial data from a waterjet cutting application.

References

1.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
Feature-Preserving Data Compression of Stamping Tonnage Information Using Wavelets
,”
Technometrics
,
41
(
4
), pp.
327
339
.
2.
Jin
,
J.
, and
Shi
,
J.
,
2001
, “
Automatic Feature Extraction of Waveform Signals for In-Process Diagnostic Performance Improvement
,”
J. Intell. Manuf.
,
12
(
3
), pp.
257
268
.
3.
Feng
,
Z.
,
Liang
,
M.
, and
Chu
,
F.
,
2013
, “
Recent Advances in Time-Frequency Analysis Methods for Machinery Fault Diagnosis: A Review With Application Examples
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
165
205
.
4.
Ayenu-Prah
,
A.
, and
Attoh-Okine
,
N.
,
2010
, “
A Criterion for Selecting Relevant Intrinsic Mode Functions in Empirical Mode Decomposition
,”
Adv. Adapt. Data Anal.
,
2
(
1
), pp.
1
24
.
5.
Flandrin
,
P.
,
Goncalves
,
P.
, and
Rilling
,
G.
,
2004
, “
Detrending and Denoising With Empirical Mode Decomposition
,”
XII European Signal Processing Conference (EUSIPCO)
,
Vienna, Austria
, Sept. 6–10, pp.
1581
1584
.
6.
Gao
,
Q.
,
Duan
,
C.
,
Fan
,
H.
, and
Meng
,
Q.
,
2008
, “
Rotating Machine Fault Diagnosis Using Empirical Mode Decomposition
,”
Mech. Syst. Signal Process.
,
22
(
5
), pp.
1072
1081
.
7.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. L.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis
,”
Proc. R. Soc. London Ser. A
,
454
(
1971
), pp.
903
995
.
8.
Jia
,
Z.
,
Zhang
,
L.
,
Wang
,
F.
, and
Liu
,
W.
,
2010
, “
A New Method for Discharge State Prediction of Micro-EDM Using Empirical Mode Decomposition
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
014501
.
9.
Peng
,
Y.
,
2006
, “
Empirical Model Decomposition Based Time-Frequency Analysis for the Effective Detection of Tool Breakage
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
154
166
.
10.
Rai
,
V. K.
, and
Mohanty
,
A. R.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2607
2615
.
11.
Guo
,
W.
, and
Tse
,
P. W.
,
2013
, “
A Novel Signal Compression Method Based on Optimal Ensemble Empirical Mode Decomposition for Bearing Vibration Signals
,”
J. Sound Vib.
,
332
(
2
), pp.
423
441
.
12.
Yan
,
R.
, and
Gao
,
R. X.
,
2008
, “
Rotary Machine Health Diagnosis Based on Empirical Mode Decomposition
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021007
.
13.
Roth
,
J. T.
,
Djurdjanovic
,
D.
,
Yang
,
X.
,
Mears
,
L.
, and
Kurfess
,
T.
,
2010
, “
Quality and Inspection of Machining Operations: Tool Condition Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041015
.
14.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.
15.
Zvokelj
,
M.
,
Zupan
,
S.
, and
Prebil
,
I.
,
2010
, “
Multivariate and Multi-Scale Monitoring of Large-Size Low Speed Bearings Using Ensemble Empirical Mode Decomposition Method Combined With Principal Component Analysis
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
1049
1067
.
16.
Zvokelj
,
M.
,
Zupan
,
S.
, and
Prebil
,
I.
,
2011
, “
Non-Linear Multivariate and Multi-Scale Monitoring and Signal Denoising Strategy Using Kernel Principal Component Analysis Combined With Ensemble Empirical Mode Decomposition Method
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2631
2653
.
17.
Zhang
,
J.
,
Yan
,
R.
,
Gao
,
R. X.
, and
Feng
,
Z.
,
2010
, “
Performance Enhancement of Ensemble Empirical Mode Decomposition
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
2104
2123
.
18.
Grasso
,
M.
,
Pennacchi
,
P.
, and
Colosimo
,
B. M.
,
2014
, “
Empirical Mode Decomposition of Pressure Signal for Health Condition Monitoring in Waterjet Cutting
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1–4
), pp.
347
364
.
19.
Liang
,
H.
,
Lin
,
Q.-H.
, and
Chen
,
J. D. Z.
,
2005
, “
Application of the Empirical Mode Decomposition to the Analysis of the Esophageal Manometric Data in Gastroesophageal Reflux Disease
,”
IEEE Trans. Biomed. Eng.
,
52
(
10
), pp.
1692
1701
.
20.
Bu
,
N.
,
Ueno
,
N.
, and
Fukuda
,
O.
,
2007
, “
Monitoring of Respiration and Heartbeat During Sleep Using a Flexible Piezoelectric Film Sensor and Empirical Mode Decomposition
,”
29th Annual International Conference of the
IEEE EMBS
,
Lyon, France
, Aug. 22–26, pp.
1362
1366
.
21.
Ricci
,
R.
, and
Pennacchi
,
P.
,
2011
, “
Diagnostics of Gear Faults Based on EMD and Automatic Selection of Intrinsic Mode Functions
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
821
838
.
22.
Komaty
,
A.
,
Boudraa
,
A. O.
,
Augier
,
B.
, and
Daré-Emzivat
,
D.
,
2014
, “
EMD-Based Filtering Using Similarity Measure Between Probability Density Functions of IMFs
,”
IEEE Trans. Instrum. Meas.
,
63
(
1
), pp.
27
34
.
23.
Cheremisinoff
,
N. P.
, and
Ferrante
,
L.
,
1987
,
Practical Statistics for Engineers and Scientists
,
CRC Press
, Lancaster, PA.
24.
Izenman
,
A. J.
,
1991
, “
Review Papers: Recent Developments in Nonparametric Density Estimation
,”
J. Am. Stat. Assoc.
,
86
(
413
), pp.
205
224
.
25.
Zambon
,
A. Z.
, and
Dias
,
R.
,
2012
, “
A Review of Kernel Density Estimation With Applications to Econometrics
,”
arXiv
:1212.2812v1 [stat.ME], pp.
1
35
.
26.
Venables
,
W. N.
, and
Ripley
,
B. D.
,
2002
,
Modern Applied Statistics With S
,
Springer
,
New York
.
27.
Bowman
,
A. W.
, and
Azzalini
,
A.
,
1997
,
Applied Smoothing Techniques for Data Analysis: The Kernel Approach With S-Plus Illustrations
,
Oxford University Press
,
Oxford, UK
.
28.
Bowman
,
A. W.
,
1984
, “
An Alternative Method of Cross-Validation for the Smoothing of Kernel Density Estimates
,”
Biometrika
,
71
(
2
), pp.
353
360
.
29.
Hardle
,
W.
,
Marron
,
J. S.
, and
Wand
,
M. P.
,
1990
, “
Bandwidth Choice for Density Derivatives
,”
J. R. Stat. Soc., Ser. B
,
52
(
1
), pp.
223
232
.
30.
Vendramin
,
L.
,
Campello
,
R. J.
, and
Hruschka
,
E. R.
,
2010
, “
Relative Clustering Validity Criteria: A Comparative Overview
,”
Stat. Anal. Data Mining
,
3
(
4
), pp.
209
235
.
31.
Ball
,
G. H.
, and
Hall
,
D. J.
,
1965
, “
ISODATA, A Novel Method of Data Analysis and Pattern Classification
,” Standford Research Institute, Menlo Park, CA, Technical Report NTIS No. AD 699616.
32.
Calinski
,
T.
, and
Harabasz
,
J.
,
1974
, “
A Dendrite Method for Cluster Analysis
,”
Commun. Stat.
,
3
(1), pp.
1
27
.
33.
Hartigan
,
J. A.
,
1975
,
Clustering Algorithms
,
Wiley
,
New York
.
34.
Zhao
,
Q.
,
Xu
,
M.
, and
Fränti
,
P.
,
2009
, “
Sum-of-Squares Based Cluster Validity Index and Significance Analysis
,”
Adaptive and Natural Computing Algorithms
(Lecture Notes in Computer Science), Vol.
5495
,
Springer
, pp.
313
322
.
35.
Xu
,
L.
,
1997
, “
Bayesian Ying-Yang Machine, Clustering and Number of Clusters
,”
Pattern Recognit. Lett.
,
18
, pp.
1167
1178
.
36.
Wu
,
Z.
, and
Huang
,
N. E.
,
2004
, “
A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method
,”
Proc. R. Soc. London, Ser. A
,
460
(
2046
), pp.
1597
1611
.
37.
Kovacevic
,
R.
,
Hashish
,
M.
,
Mohan
,
R.
,
Ramulu
,
M.
,
Kim
,
T. J.
, and
Geskin
,
E. S.
,
1997
, “
State of the Art of Research and Development in Abrasive Waterjet Machining
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
), pp.
776
785
.
38.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1
), pp.
314
334
.
39.
Grasso
,
M.
,
Goletti
,
M.
,
Annoni
,
M.
, and
Colosimo
,
B. M.
,
2013
, “
A New Approach for Online Health Assessment of Abrasive Waterjet Cutting Systems
,”
Int. J. Abrasive Technol.
,
6
(
2
), pp.
158
181
.
40.
Zhang
,
C.
,
Li
,
B.
,
Chen
,
B.
,
Cao
,
H.
,
Zi
,
Y.
, and
He
,
Z.
,
2014
, “
Periodic Impulsive Fault Feature Extraction of Rotating Machinery Using Dual-Tree Rational Dilation Complex Wavelet Transform
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051011
.
41.
Xi
,
S.
,
Cao
,
H.
,
Chen
,
X.
,
Zhang
,
X.
, and
Jin
,
X.
,
2015
, “
A Frequency-Shift Synchrosqueezing Method for Instantaneous Speed Estimation of Rotating Machinery
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031012
.
42.
Rilling
,
G.
,
Flandrin
,
P.
, and
Goncalves
,
P.
,
2003
, “
On Empirical Mode Decomposition and Its Algorithms
,”
IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03
,
Grado, Italy
.
43.
Carroccia
,
A.
,
Grasso
,
M.
,
Maggioni
,
M.
, and
Colosimo
,
B. M.
,
2015
, “
Improved Signal Characterization Via Empirical Mode Decomposition to Enhance In-Line Quality Monitoring
,”
48th CIRP Conference on Manufacturing Systems
,
Ischia, Italy
, June 24–26.
You do not currently have access to this content.