Abstract

Hydroerosive grinding is used as a finishing and inlet rounding operation of diesel nozzles to improve the engine performance. A mixture of hard particles suspended in a carrier fluid circulates through the injection holes to remove material until the required flow condition is achieved, although the time to reach this specification increases with time. The aim of this study is to analyze the process efficiency without renewal of solid particles. Results show that the removal efficiency decreased 20% after 150 hrs and this significant loss can be attributed to hydrodynamic interactions, particle size distribution change, and fluid viscosity reduction.

References

1.
Winter
,
J.
,
Dittus
,
B.
,
Kerst
,
A.
,
Muck
,
O.
,
Schulz
,
R.
, and
Vogel
,
A.
,
2004
, “
Nozzle Hole Geometry—A Powerful Instrument for Advanced Spray Design
,”
Thiesel International Conference on Thermo-and Fluid Dynamics Processes in Diesel Engines
,
Valencia
,
Spain
, pp. 19–34.
2.
Kim
,
H. J.
,
Park
,
S. H.
, and
Lee
,
C. S.
,
2015
, “
Influence of the Fuel Spray Angle and the Injection Strategy on the Emissions Reduction Characteristics in a Diesel Engine
,”
Proc. Inst. Mech. Eng. D
,
229
(
5
), pp.
563
573
.10.1177/0954407014547746
3.
Payri
,
F.
,
Bermúdez
,
V.
,
Payri
,
R.
, and
Salvador
,
F. J.
,
2005
, “
The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles
,”
Fuel
,
83
(
4–5
), pp.
419
431
.10.1016/j.fuel.2003.09.010
4.
Potz
,
D.
,
Christ
,
W.
, and
Dittus
,
B.
,
2002
, “
Diesel Nozzle—The Determining Interface Between Injection System and Combustion Chamber
,”
Thermo- and Fluid-Dynamic Processes in Diesel Engines
,
Springer
, Berlin, pp.
133
143
.
5.
Weickert
,
M.
,
Sommerfeld
,
M.
,
Teike
,
G.
, and
Iben
,
U.
,
2011
, “
Experimental and Numerical Investigation of the Hydroerosive Grinding
,”
Powder Technol.
,
214
(
1
), pp.
1
13
.10.1016/j.powtec.2011.07.013
6.
Clark
,
H. M.
, and
Hartwich
,
R. B.
,
2001
, “
A Re-Examination of the “Particle Size Effect” in Slurry Erosion
,”
Wear
,
248
(
1–2
), pp.
147
161
.10.1016/S0043-1648(00)00556-1
7.
Sooraj
,
V. S.
, and
Radhakrishnan
,
V.
,
2013
, “
Elastic Impact of Abrasives for Controlled Erosion in Fine Finishing of Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051019
.10.1115/1.4025338
8.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186–187
(
1
), pp.
1
10
.10.1016/0043-1648(95)07188-1
9.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.10.1016/0043-1648(63)90003-6
10.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.10.1016/j.wear.2006.01.035
11.
Diver
,
C.
,
Atkinson
,
J.
,
Befrui
,
B.
,
Heiml
,
H. J.
, and
Li
,
L.
,
2007
, “
Improving the Geometry and Quality of a Micro-Hole Fuel Injection Nozzle by Means of Hydroerosive Grinding
,”
Proc. Inst. Mech. Eng. B
,
221
(
1
), pp.
1
9
.10.1243/09544054JEM395
12.
Crowe
,
C. T.
,
2005
,
Multiphase Flow Handbook
,
CRC Press
, New York.10.1201/9781420040470
13.
Humphrey
,
J. A. C.
,
1990
, “
Fundamentals of Fluid Motion in Erosion by Solid Particle Impact
,”
Int. J. Heat Fluid Flow
,
11
(
3
), pp.
170
195
.10.1016/0142-727X(90)90036-B
14.
Richardson
,
J. F.
, and
Zaki
,
W. N.
,
1997
, “
Sedimentation and Fluidisation: Part 1
,”
Chem. Eng. Res. Des.
,
75
, pp.
S82
S100
.10.1016/S0263-8762(97)80006-8
15.
BS EM 10084:2008
,
2008
,
Case Hardening Steels—Technical Delivery Conditions
,
BSI British Standards
, London.
16.
Hamblin
,
M. G.
, and
Stachowiak
,
G. W.
,
1996
, “
Description of Abrasive Particle Shape and Its Relation to Two-Body Abrasive Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
803
810
.10.1080/10402009608983598
17.
Field
,
E.
,
Farhat
,
M.
, and
Walley
,
M.
,
2014
, “
Comminution Limit (CL) of Particles and Possible Implications for Pumped Storage Reservoirs
,”
J. Mater. Sci.
,
49
(
10
), pp.
3780
3784
.10.1007/s10853-014-8089-3
You do not currently have access to this content.