The contour error (CE) of machining processes is defined as the difference between the desired and actual produced shape. Two major factors contributing to CE are axis position error and tool deflection. A large amount of research work formulates the CE in convenient locally defined task coordinate frames that are subject to significant approximation error. The more accurate global task coordinate frame (GTCF) can be used, but transforming the control problem to the GTCF leads to a highly nonlinear control problem. An adaptive robust control (ARC) approach is designed to control machine position in the GTCF, while additionally accounting for tool deflection, to minimize the CE. The combined GTCF/ARC approach is experimentally validated by applying the control to circular contours on a three axis milling machine. The results show that the proposed approach reduces CE in all cases tested.

References

1.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2005
, “
Tracking and Contour Error Control in CNC Servo Systems
,”
Int. J. Mach. Tools Manuf.
,
45
(
3
), pp.
301
326
.10.1016/j.ijmachtools.2004.08.008
2.
Koren
,
Y.
, and
Lo
,
C. C.
,
1991
, “
Variable-Gain Cross-Coupling Controller for Contouring
,”
CIRP Ann.
,
40
(
1
), pp.
371
374
.10.1016/S0007-8506(07)62009-5
3.
Chiu
,
G. T. C.
, and
Tomizuka
,
M.
,
2001
, “
Contouring Control of Machine Tool Feed Drive Systems: A Task Coordinate Frame Approach
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
130
139
.10.1109/87.896754
4.
Uchiyama
,
N.
,
2008
, “
Contouring Control of Biaxial Feed Drive Systems With Non-Linear Friction Compensation
,”
Proc. Inst. Mech. Eng., Part I
,
222
(
3
), pp.
153
162
.10.1243/09596518JSCE429
5.
Luo
,
T.
,
Lu
,
W.
,
Krishnamurthy
,
K.
, and
McMillin
,
B.
,
1998
, “
A Neural Network Approach for Force and Contour Error Control in Multi-Dimensional End Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1343
1359
.10.1016/S0890-6955(97)00061-8
6.
Chen
,
S.
, and
Wu
,
K.
,
2007
, “
Contouring Control of Smooth Paths for Multiaxis Motion Systems Based on Equivalent Errors
,”
IEEE Trans. Control Syst. Technol.
,
15
(
6
), pp.
1151
1158
.10.1109/TCST.2007.899719
7.
Yao
,
B.
,
Chan
,
S. P.
, and
Wang
,
D. W.
,
1994
, “
Unified Formulation of Variable Structure Control Schemes for Robot Manipulators
,”
IEEE Trans. Autom. Control
,
39
(
2
), pp.
371
376
.10.1109/9.272337
8.
Yao
,
B.
,
Hu
,
C.
, and
Wang
,
Q.
,
2012
, “
An Orthogonal Global Task Coordinate Frame for Contouring Control of Biaxial Systems
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
622
634
.10.1109/TMECH.2011.2118226
9.
Chen
,
C. L.
, and
Lin
,
K. C.
,
2008
, “
Observer-Based Contouring Controller Design of a Biaxial Stage System Subject to Friction
,”
IEEE Trans. Control Syst. Technol.
,
16
(
2
), pp.
322
329
.10.1109/TCST.2007.903107
10.
Qian
,
K.
, and
Zhang
,
Y.
,
2014
, “
Bilinear Model Predictive Control of Plasma Keyhole Pipe Welding Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031002
.10.1115/1.4025337
11.
Seo
,
J.
,
Khajepour
,
A.
, and
Huissoon
,
J. P.
,
2014
, “
Comprehensive Online Control Strategies for Plastic Injection Molding Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041009
.10.1115/1.4027491
12.
Tang
,
L.
, and
Landers
,
R. G.
,
2012
, “
Predictive Contour Control With Adaptive Feed Rate
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
669
679
.10.1109/TMECH.2011.2119324
13.
Zhang
,
J.
,
2012
, “
An Integrated Contour Error Real-Time Self-Control Method
,”
4th International Conference on Intelligent Human-Machine Systems and Cybernetics
,
Nanchang, Jiangxi, China
, Aug. 26–27, pp.
67
71
.
14.
Sencer
,
B.
, and
Altintas
,
Y.
,
2009
, “
Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part II: Precision Contour Controller Design
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031007
.10.1115/1.3123336
15.
Lin
,
F.
,
Chou
,
P.
,
Shieh
,
P.
, and
Chen
,
S.
,
2009
, “
Robust Control of an LUSM-Based X-Y-Theta Motion Control Stage Using an Adaptive Interval Type-2 Fuzzy Neural Network
,”
IEEE Trans. Fuzzy Syst.
,
17
(
1
), pp.
24
38
.10.1109/TFUZZ.2008.2005938
16.
Yao
,
B.
,
1997
, “
High Performance Adaptive Robust Control of Nonlinear Systems: A General Framework and New Schemes
,”
Proceedings of the 36th IEEE Conference on Decision and Control
, San Diego, CA, Dec. 10–12, pp.
2489
2494
.
17.
Wang
,
L. M.
,
Jin
,
F. Y.
, and
Sun
,
Y. B.
,
2009
, “
Contour Control for Direct Drive XY Table
,”
IEEE International Conference on Mechatronics and Automation
,
Changchun, China
, Aug. 9–12, pp.
4919
4923
.
18.
Morimoto
,
Y.
,
Suzuki
,
N.
,
Kaneko
,
Y.
, and
Isobe
,
M.
,
2014
, “
Vibration Control of Relative Tool-Spindle Displacement for Computer Numerically Controlled Lathe With Pipe Frame Structure
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044502
.10.1115/1.4027594
19.
Suh
,
S. H.
,
Cho
,
J. H.
, and
Hascoet
,
J. Y.
,
1996
, “
Incorporation of Tool Deflection in Tool Path Computation: Simulation and Analysis
,”
J. Manuf. Syst.
,
15
(
3
), pp.
190
199
.10.1016/0278-6125(96)89571-9
20.
Law
,
K. M. Y.
, and
Geddam
,
A.
,
2003
, “
Error Compensation in the End Milling of Pockets: A Methodology
,”
J. Mater. Process. Technol.
,
139
(
1–3
), pp.
21
27
.10.1016/S0924-0136(03)00176-6
21.
Uddin
,
M. S.
,
Ibaraki
,
S.
,
Matsubara
,
A.
,
Nishida
,
S.
, and
Kakino
,
Y.
,
2007
, “
A Tool Path Modification Approach to Cutting Engagement Regulation for the Improvement of Machining Accuracy in 2D Milling With a Straight End Mill
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1069
1079
.10.1115/1.2752526
22.
Tang
,
Y.
,
Xu
,
C. Y.
, and
Jackson
,
M.
,
2009
, “
Geometrical Adaptive Controller for Tool Deflection Compensation in Helical End Milling Processes
,” Proceedings of the
ASME
International Manufacturing Science and Engineering Conference
, West Lafayette, IN, Oct. 4–7, pp.
377
383
.10.1115/MSEC2009-84218
23.
Li
,
H.
,
Zhou
,
X.
, and
Chen
,
Y. Q.
,
2005
, “
Iterative Learning Control for Cross-Coupled Contour Motion Systems
,”
IEEE International Conference on Mechatronics and Automation
, Niagara Falls, ON, Canada, July 29–Aug. 1, pp.
1468
1472
.
24.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2008
, “
A Cross-Coupled Iterative Learning Control Design for Precision Motion Control
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1218
1231
.10.1109/TCST.2008.919433
25.
Xu
,
L.
, and
Yao
,
B.
,
2000
, “
Coordinated Adaptive Robust Contour Tracking of Linear-Motor-Driven Tables in Task Space
,”
Proceedings of the 39th IEEE Conference on Decision and Control
,
Sydney, NSW
, Dec. 12–15, pp.
2430
2435
.
26.
Hu
,
C.
,
Yao
,
B.
, and
Wang
,
Q.
,
2010
, “
Coordinated Adaptive Robust Contouring Controller Design for an Industrial Biaxial Precision Gantry
,”
IEEE/ASME Trans. Mechatron.
,
15
(
5
), pp.
728
735
.10.1109/TMECH.2009.2032292
27.
Rober
,
S. J.
, and
Shin
,
Y. C.
,
1995
, “
Modeling and Control of CNC Machines Using a PC-Based Open-Architecture Controller
,”
Mechatronics
,
5
(
4
), pp.
401
420
.10.1016/0957-4158(95)00009-T
28.
Xu
,
C. Y.
, and
Shin
,
Y. C.
,
2007
, “
Control of Cutting Force for Creep-Feed Grinding Processes Using a Multi-Level Fuzzy Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
4
), pp.
480
492
.10.1115/1.2718238
29.
Axinte
,
D.
, and
Gindy
,
N.
,
2004
, “
Assessment of the Effectiveness of a Spindle Power Signal for Tool Condition Monitoring in Machining Processes
,”
Int. J. Prod. Res.
,
42
(
13
), pp.
2679
2691
.10.1080/00207540410001671642
30.
Javorek
,
B.
,
Fussell
,
B. K.
, and
Jerard
,
R. B.
,
2008
, “
Calibration of a Milling Force Model Using Feed and Spindle Power Sensors
,”
International Manufacturing Science and Engineering Conference
, Evanston, IL, Oct. 7–10, pp.
1
10
.
You do not currently have access to this content.