The complexity of local and dynamic thermal transformations in additive manufacturing (AM) processes makes it difficult to track in situ thermomechanical changes at different length scales within a part using experimental process monitoring equipment. In addition, in situ process monitoring is limited to providing information only at the exposed surface of a layer being built. As a result, an understanding of the bulk microstructural transformations and the resulting behavior of a part requires rigorous postprocess microscopy and mechanical testing. In order to circumvent the limited feedback obtained from in situ experiments and to better understand material response, a novel 3D dislocation density based thermomechanical finite element framework has been developed. This framework solves for the in situ response much faster than currently used state-of-the-art modeling software since it has been specifically designed for AM platforms. This modeling infrastructure can predict the anisotropic performance of AM-produced components before they are built, can serve as a method to enable in situ closed-loop process control and as a method to predict residual stress and distortion in parts and thus enable support structure optimization. This manuscript provides an overview of these software modules which together form a robust and reliable AM software suite to address future needs for machine development, material development, and geometric optimization.

References

1.
Wördenweber
,
B.
,
1984
, “
Finite Element Mesh Generation
,”
Comput. Aided Des
,
16
(
5
), pp.
285
291
.10.1016/0010-4485(84)90087-3
2.
Ho-Le
,
K.
,
1988
, “
Finite Element Mesh Generation Methods: A Review and Classification
,”
Comput. Aided Des.
,
20
(
1
), pp.
27
38
.10.1016/0010-4485(88)90138-8
3.
Caendish
,
J. C.
,
Field
,
D. A.
, and
Frey
,
W. H.
,
1985
, “
An Approach to Automatic Three-Dimensional Finite Element Mesh Generation
,”
Int. J. Numer. Methods Eng.
,
21
(
2
), pp.
329
347
.10.1002/nme.1620210210
4.
Staten
,
M. L.
,
Woodbury
,
A. C.
,
Benzley
,
S. E.
, and
Shepherd
,
J. F.
,
2012
, U.S. Patent No. 8,194,068.
5.
Yerry
,
M. A.
, and
Shephard
,
M. S.
,
1983
, “
A Modified Quadtree Approach to Finite Element Mesh Generation
,”
IEEE Trans. Comput. Graphics Appl.
,
3
(
1
), pp.
39
46
.10.1109/MCG.1983.262997
6.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
61
67
.10.1016/S0890-6955(01)00093-1
7.
Shiomi
,
M.
,
Yoshidome
,
A.
,
Abe
,
F.
, and
Osakada
,
K.
,
1999
, “
Finite Element Analysis of Melting and Solidifying Processes in Laser Rapid Prototyping of Metallic Powders
,”
Int. J. Mach. Tools Manuf.
,
39
(
2
), pp.
237
252
.10.1016/S0890-6955(98)00036-4
8.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting With Evaporation
,”
Acta Mater.
,
57
(
20
), pp.
6006
6012
.10.1016/j.actamat.2009.08.027
9.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.10.1007/s11740-009-0192-y
10.
Dai
,
K.
, and
Shaw
,
L.
,
2004
, “
Thermal and Mechanical Finite Element Modeling of Laser Forming From Metal and Ceramic Powders
,”
Acta Mater.
,
52
(
1
), pp.
69
80
.10.1016/j.actamat.2003.08.028
11.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2
), pp.
117
123
.10.1016/j.ijmachtools.2003.10.019
12.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12
), pp.
916
923
.10.1016/j.ijmachtools.2009.07.004
13.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des.
,
52
, pp.
638
647
.10.1016/j.matdes.2013.05.070
14.
Childs
,
T. H. C.
,
Hauser
,
C.
, and
Badrossamay
,
M.
,
2005
, “
Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modelling
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
4
), pp.
339
357
.10.1243/095440505X8109
15.
Jhabvala
,
D.
, Boillat,
E.
,
Antignac
,
T.
, and
Glardon
,
R.
, 2010, “On the Effect of Scanning Strategies in the Selective Laser Melting Process,”
Virtual Phys. Prot. J.
,
5
(2), pp. 99–109.10.1080/17452751003688368
16.
Zeng
,
K.
,
Pal
,
D.
,
Patil
,
N.
, and
Stucker
,
B. E.
,
2013
, “
A New Dynamic Mesh Method Applied to the Simulation of Selective Laser Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp. 549–559.
17.
Pal
,
D.
,
Behera
,
S. K.
, and
Ghosh
,
S.
,
2009
, “
Crystal Plasticity Modeling of Creep and Microtwinning in Nickel Based Superalloys
,”
10th United States National Congress on Computational Mechanics
, Columbus, OH, July 15–19.
18.
Pal
,
D.
,
Patil
,
N.
, and
Stucker
,
B. E.
,
2012
, “
Prediction of Mechanical Properties of Electron Beam Melted Ti6Al4V Parts Using Dislocation Density Based Crystal Plasticity Framework
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 6–8, pp. 507–525.
19.
Brandal
,
G.
,
Satoh
,
G.
,
Yao
,
Y. L.
, and
Naveed
,
S.
,
2013
, “
Beneficial Interface Geometry for Laser Joining of NiTi to Stainless Steel Wires
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061006
.10.1115/1.4025495
20.
Tan
,
H.
, and
Yao
,
Y. L.
,
2010
, “
Laser Joining of Continuous Glass Fiber Composite Preforms
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011010
.10.1115/1.4023270
21.
Satoh
,
G.
,
Huang
,
X.
,
Ramirez
,
A. G.
, and
Yao
,
Y. L.
,
2012
, “
Characterization and Prediction of Texture in Laser Annealed NiTi Shape Memory Thin Films
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051006
.10.1115/1.4007459
22.
Wang
,
H.
,
Kongsuwan
,
P.
,
Satoh
,
G.
, and
Yao
,
Y. L.
,
2012
, “
Femtosecond Laser-Induced Simultaneous Surface Texturing and Crystallization of a-Si:H Thin Film: Absorption and Crystallinity
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031006
.10.1115/1.4006548
23.
Wang
,
H.
,
Hsu
,
S. T.
,
Tan
,
H.
,
Yao
,
Y. L.
,
Chen
,
H.
, and
Azer
,
M. N.
,
2013
, “
Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051004
.10.1115/1.4024818
24.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison With Experimental Measurements
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
269
277
.10.1016/j.commatsci.2005.07.007
25.
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B. E.
,
2013
, “
A New Finite Element Solver Using Numerical Eigen Modes for Fast Simulation of Additive Manufacturing Processes
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp. 535–548.
26.
Nikoukar
,
M.
,
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B. E.
,
2013
, “
Methods for Enhancing the Speed of Numerical Calculations for the Prediction of the Mechanical Behavior of Parts Made Using Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp. 525–534.
27.
Asadi
,
M.
, and
Goldak
,
J. A.
,
2014
, “
An Integrated Computational Welding Mechanics With Direct-Search Optimization for Mitigation of Distortion in an Aluminum Bar Using Side Heating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011007
.10.1115/1.4025406
28.
Afazov
,
S. M.
,
Becker
,
A. A.
, and
Hyde
,
T. H.
,
2012
, “
Mathematical Modeling and Implementation of Residual Stress Mapping From Microscale to Macroscale Finite Element Models
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021001
.10.1115/1.4006090
29.
Pal
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
30.
McCune
,
R. W.
,
Murphy
,
A.
,
Price
,
M.
, and
Butterfield
,
J.
,
2012
, “
The Influence of Friction Stir Welding Process Idealization on Residual Stress and Distortion Predictions for Future Airframe Assembly Simulations
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031011
.10.1115/1.4006554
31.
Pal
,
D.
, and
Stucker
,
B. E.
,
2012
, “
Time Homogenization of Al3003 H-18 Foils Undergoing Metallurgical Bonding Using Ultrasonic Consolidation
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 6–8, pp. 373–384.
32.
Pal
,
D.
, and
Stucker
,
B. E.
,
2011
, “
Some Studies on Dislocation Density Based Finite Element Modeling of Ultrasonic Consolidation
,”
Proceedings of the 5th International conference on Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 28–Oct. 1, pp. 667–676.
33.
Pal
,
D.
, and
Stucker
,
B. E.
,
2011
, “
Dislocation Density Based Finite Element Modeling of Ultrasonic Consolidation
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 8–10, pp. 375–404.
34.
Pal
,
D.
, and
Stucker
,
B. E.
,
2010
, “
Dislocation Density Based Finite Element Modeling of Ultrasonic Consolidation
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 9–11, pp. 583–591.
35.
Pal
,
D.
, and
Stucker
,
B. E.
,
2012
, “
Modeling of Ultrasonic Consolidation Using a Dislocation Density Based Finite Element Framework
,”
Virtual and Physical Prototyping Journal
,
7
(
1
), pp.
65
79
.10.1080/17452759.2012.671774
36.
Johnson
,
K. E.
,
2008
, “
Interlaminar Subgrain Refinement in Ultrasonic Consolidation
,” Ph.D. thesis, Loughborough University, Loughborough, UK.
37.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.10.1115/1.4027207
38.
Ding
,
L.
,
Zhang
,
X.
, and
Liu
,
C. R.
,
2014
, “
Dislocation Density and Grain Size Evolution in the Machining of Al6061-T6 Alloys
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041020
.10.1115/1.4027675
39.
Hammami
,
W.
,
Gilles
,
G.
,
Habraken
,
A. M.
, and
Duchêne
,
L.
,
2011
, “
Phenomenological and Crystal Plasticity Approaches to Describe the Mechanical Behaviour of Ti6Al4V Titanium Alloy
,”
Int. J. Mater. Form.
,
4
(
2
), pp.
205
215
.10.1007/s12289-011-1028-9
40.
Bridier
,
F.
,
McDowell
,
D. L.
,
Villechaise
,
P.
, and
Mendez
,
J.
,
2009
, “
Crystal Plasticity Modeling of Slip Activity in Ti–6Al–4V Under High Cycle Fatigue Loading
,”
Int. J. Plast.
,
25
(
6
), pp.
1066
1082
.10.1016/j.ijplas.2008.08.004
41.
Barton
,
N. R.
,
Bernier
,
J. V.
,
Lebensohn
,
R. A.
, and
Rollett
,
A. D.
,
2009
, “
Direct 3D Simulation of Plastic Flow From EBSD Data
,”
Electron Backscatter Diffraction in Materials Science
,
Springer
,
New York
, pp.
155
167
.
42.
Berdichevskii
,
V. L.
,
1979
, “
Variational-Asymptotic Method of Constructing a Theory of Shells
,”
J. Appl. Math. Mech.
,
43
(
4
), pp.
711
736
.10.1016/0021-8928(79)90157-6
43.
Saad
,
Y.
,
1992
,
Numerical Methods for Large Eigenvalue Problems
, Vol.
158
,
Manchester University Press
,
Manchester, UK
.
44.
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B. E.
,
2013
, “
An Energy Dissipative Constitutive Model for Multi-Surface Interface at Weld Defect Sites in Ultrasonic Consolidation Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp. 684–696.
45.
Byun
,
H. S.
, and
Lee
,
K. H.
,
2006
, “
Determination of the Optimal Build Direction for Different Rapid Prototyping Processes Using Multi-Criterion Decision Making
,”
Rob. Comput. Integr. Manuf.
,
22
(
1
), pp.
69
80
.10.1016/j.rcim.2005.03.001
46.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Metallic Additive Manufacturing: State-of-the-Art Review and Prospects
,”
Mech. Ind.
,
13
(
2
), pp.
89
96
.10.1051/meca/2012003
47.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.10.1007/978-1-4419-1120-9
48.
Zeng
,
K.
,
Patil
,
N.
,
Gu
,
H.
,
Gong
,
H.
,
Pal
,
D.
,
Starr
,
T.
, and
Stucker
,
B. E.
,
2013
, “
Layer by Layer Validation of Geometrical Accuracy in Additive Manufacturing Processes
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp. 76–87.
You do not currently have access to this content.