Bioprinting is an emerging technology for constructing and fabricating artificial tissue and organ constructs. This technology surpasses the traditional scaffold fabrication approach in tissue engineering (TE). Currently, there is a plethora of research being done on bioprinting technology and its potential as a future source for implants and full organ transplantation. This review paper overviews the current state of the art in bioprinting technology, describing the broad range of bioprinters and bioink used in preclinical studies. Distinctions between laser-, extrusion-, and inkjet-based bioprinting technologies along with appropriate and recommended bioinks are discussed. In addition, the current state of the art in bioprinter technology is reviewed with a focus on the commercial point of view. Current challenges and limitations are highlighted, and future directions for next-generation bioprinting technology are also presented.

References

1.
Merrill
,
P.
,
Murray
,
E.
,
Harrison
,
H.
, and
Guild
,
R.
,
1956
, “
Successful Homotransplantations of Human Kidneys Between Identical Twins
,”
J. Am. Med. Assoc.
,
160
(
4
), pp.
277
282
.10.1001/jama.1956.02960390027008
2.
Chen
,
H.
, and
Ozbolat
,
I. T.
,
2013
, “
Manufacturing Living Things
,”
Ind. Eng. Mag.
,
45
(
1
), pp.
30
34
.
3.
Desmet
,
T.
,
Schacht
,
E.
, and
Dubruel
,
P.
,
2008
, “
Rapid Prototyping as an Elegant Production Tool for Polymeric Tissue Engineering Scaffolds: A Review
,”
Tissue Engineering: Roles, Materials and Applications
, S. J. Barnes, L. Harris, eds., Nova Science, New York, pp. 141–189.
4.
Langer
,
R.
, and
Vacanti
,
P.
,
1993
, “
Tissue Engineering
,”
Science
,
260
(
5110
), pp.
920
926
.10.1126/science.8493529
5.
Bonassar
,
J.
, and
Vacanti
,
A.
,
1998
, “
Tissue Engineering: The First Decade and Beyond
,”
J. Cell. Biochem. Suppl.
,
72
(
30
), pp.
297
303
.10.1002/(SICI)1097-4644(1998)72:30/31+<297::AID-JCB36>3.0.CO;2-6
6.
Griffith
,
G.
, and
Naughton
,
G.
,
2002
, “
Tissue Engineering—Current Challenges and Expanding Opportunities
,”
Science
,
295
(
5557
), pp.
1009
1014
.10.1126/science.1069210
7.
Ozbolat
,
I.
, and
Yu
,
Y.
,
2013
, “
Bioprinting Toward Organ Fabrication: Challenges and Future Trends
,”
IEEE Trans. Biomed. Eng.
,
60
(
3
), pp.
691
699
.10.1109/TBME.2013.2243912
8.
Smith
,
I.
,
Liu
,
X.
,
Smith
,
L.
, and
Ma
,
P.
,
2009
, “
Nano-Structured Polymer Scaffolds for Tissue Engineering and Regenerative Medicine
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
,
1
(
2
), pp.
226
236
.10.1002/wnan.26
9.
Dietmar
,
H.
,
Michael
,
S.
, and
Makarand
,
R.
,
2004
, “
Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems
,”
Trends Biotechnol.
,
22
(
7
), pp.
354
362
.10.1016/j.tibtech.2004.05.005
10.
Sachlos
,
E.
, and
Czernuszka
,
T.
,
2003
, “
Making Tissue Engineering Scaffolds Work. Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds
,”
Eur. Cell Mater.
,
5
, pp.
29
40
.
11.
Yang
,
S.
,
Leong
,
K.
,
Du
,
Z.
, and
Chua
,
C.
,
2001
, “
The Design of Scaffolds for Use in Tissue Engineering, Part I. Traditional Factors
,”
Tissue Eng.
,
7
(
6
), pp.
679
689
.10.1089/107632701753337645
12.
Jakab
,
K.
,
Norotte
,
C.
,
Marga
,
F.
,
Murphy
,
K.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2010
, “
Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells
,”
Biofabrication
,
2
(
2
), p.
022001
.10.1088/1758-5082/2/2/022001
13.
Langer
,
R.
,
2007
, “
Editorial: Tissue Engineering: Perspectives, Challenges, and Future Directions
,”
Tissue Eng.
,
13
(
1
), pp.
1
2
.10.1089/ten.2006.0219
14.
Jakab
,
K.
,
Norotte
,
C.
,
Damon
,
B.
,
Marga
,
F.
,
Neagu
,
A.
,
Besch-Williford
,
C.
,
Kachurin
,
A.
,
Church
,
K.
,
Park
,
H.
,
Mironov
,
V.
,
Markwald
,
R.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2008
, “
Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures
,”
Tissue Eng., Part A
,
14
(
3
), pp.
413
421
.10.1089/tea.2007.0173
15.
L'Heureux
,
N.
,
Pâquet
,
S.
,
Labb́e
,
R.
,
Germain
,
L.
, and
Auger
,
F.
,
1998
, “
A Completely Biological Tissue-Engineered Human Blood Vessel
,”
FASEB J
,
12
(
1
), pp.
47
56
.
16.
McAllister
,
T.
,
Maruszewski
,
M.
,
Garrido
,
A.
,
Wystrychowski
,
W.
,
Dusserre
,
N.
,
Marini
,
A.
,
Zagalski
,
K.
,
Fiorillo
,
A.
,
Avila
,
H.
,
Manglano
,
X.
,
Antonelli
,
J.
,
Kocher
,
A.
,
Zembala
,
M.
,
Cierpka
,
L.
,
de la Fuente
,
L. M.
, and
L'heureux
,
N.
,
2009
, “
Effectiveness of Haemodialysis Access With an Autologous Tissue-Engineered Vascular Graft: A Multicentre Cohort Study
,”
Lancet
,
373
(
9673
), pp.
1440
1446
.10.1016/S0140-6736(09)60248-8
17.
Norotte
,
C.
,
Marga
,
S.
,
Niklason
,
E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.10.1016/j.biomaterials.2009.06.034
18.
Mironov
,
V.
,
Trusk
,
T.
,
Kasyanov
,
V.
,
Little
,
S.
,
Swaja
,
R.
, and
Markwald
,
R.
,
2009
, “
Biofabrication: A 21st Century Manufacturing Paradigm
,”
Biofabrication
,
1
(
2
), pp.
1
16
.10.1088/1758-5082/1/2/022001
19.
Guillemot
,
F.
,
Mironov
,
V.
, and
Nakamura
,
M.
,
2010
, “
Bioprinting is Coming of Age: Report From the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09)
,”
Biofabrication
,
2
(
1
), p.
010201
.10.1088/1758-5082/2/1/010201
20.
Mironov
,
V.
,
Reis
,
N.
, and
Derby
,
B.
,
2006
, “
Bioprinting: A Beginning
,”
Tissue Eng.
,
12
(
4
), pp.
631
634
.10.1089/ten.2006.12.631
21.
Barron
,
J.
,
Wu
,
P.
,
Ladouceur
,
H.
, and
Ringeisen
,
B.
,
2004
, “
Biological Laser Printing: A Novel Nechnique for Creating Heterogeneous 3-Dimensional Cell Patterns
,”
Biomed. Microdevices
6
(
2
), pp.
139
147
.10.1023/B:BMMD.0000031751.67267.9f
22.
Guillemot
,
F.
,
Souquet
,
A.
,
Catros
,
S.
,
Guillotin
,
B.
,
Lopez
,
J.
, and
Faucon
,
M.
,
2010
, “
High Throughput Laser Printing of Cells and Biomaterials for Tissue Engineering
,”
Acta Biomater.
,
6
(
7
), pp.
2494
2500
.10.1016/j.actbio.2009.09.029
23.
Wang
,
W.
,
Huang
,
Y.
,
Grujicic
,
M.
, and
Chrisey
,
B.
,
2008
, “
Study of Impact-Induced Mechanical Effects in Cell Direct Writing Using Smooth Particle Hydrodynamic Method
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021012
.10.1115/1.2896118
24.
Barron
,
J. A.
,
Ringeisen
,
B.
,
Kim
,
H.
,
Spargo
,
B.
, and
Chrisey
,
D.
,
2004
, “
Application of Laser Printing to Mammalian Cells
,”
Thin Solid Films
,
453
(
1
), pp.
383
387
.10.1016/j.tsf.2003.11.161
25.
Nahmias
,
Y.
,
Schwartz
,
R.
,
Verfaillie
,
C.
, and
Odde
,
D.
,
2005
, “
Laser-Guided Direct Writing for Three-Dimensional Tissue Engineering
,”
Biotechnol. Bioeng.
,
92
(
2
), pp.
129
136
.10.1002/bit.20585
26.
Guillotin
,
B.
,
Souquet
,
A.
,
Catros
,
S.
,
Duocastella
,
M.
,
Pippenger
,
B.
,
Bellance
,
S.
,
Bareille
,
R.
,
Remy
,
M.
,
Bordenave
,
L.
,
Amedee
,
J.
, and
Guillemot
,
F.
,
2010
, “
Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Micro-Scale Organization
,”
Biomaterials
,
31
(
28
), pp.
7250
7256
.10.1016/j.biomaterials.2010.05.055
27.
Gaebel
,
R.
,
Mn
,
N.
,
Liu
,
J.
,
Guan
,
J.
,
Koch
,
L.
,
Kolpsch
,
C.
,
Gruene
,
M.
,
Toelk
,
A.
,
Wang
,
W.
,
Mark
,
P.
,
Wang
,
F.
,
Chichkov
,
B.
,
Li
,
W.
, and
Steinhoff
,
G.
,
2011
, “
Patterning Human Stem Cells and Endothelial Cells With Laser Printing for Cardiac Regeneration
,”
Biomaterials
,
32
(
35
), pp.
9218
9230
.10.1016/j.biomaterials.2011.08.071
28.
Nakamura
,
M.
,
Kobayashi
,
A.
,
Takagi
,
F.
,
Watanabe
,
A.
,
Hiruma
,
Y.
, and
Ohuchi
,
K.
,
2005
, “
Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells
,”
Tissue Eng.
,
11
(
11–12
), pp.
1658
1666
.10.1089/ten.2005.11.1658
29.
Xu
,
T.
,
Gregory
,
A.
,
Molnar
,
P.
,
Cui
,
X.
,
Jalota
,
S.
, and
Bhaduri
,
B.
,
2006
, “
Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method
,”
Biomaterials
,
27
(
19
), pp.
3580
3588
.10.1016/j.biomaterials.2006.01.048
30.
Geckil
,
H.
,
Xu
,
F.
,
Zhang
,
X.
,
Moon
,
S.
, and
Demirci
,
U.
,
2010
, “
Engineering Hydrogels as Extracellular Matrix Mimics
,”
Biomaterials
,
5
(
3
), pp.
469
484
.10.2217/nnm.10.12
31.
Boland
,
T.
,
Mironov
,
V.
,
Gutowska
,
A.
,
Roth
,
E.
, and
Markwald
,
R.
,
2003
, “
Cell and Organ Printing 2: Fusion of Cell Aggregates in Three-Dimensional Gels
,”
Anat. Rec.
,
272A
(
2
), pp.
497
502
.10.1002/ar.a.10059
32.
Keenan
,
M.
, and
Folch
,
A.
,
2008
, “
Biomolecular Gradients in Cell Culture Systems
,”
Lab Chip
,
8
(
1
), pp.
34
57
.10.1039/b711887b
33.
Wilson
,
W.
, and
Boland
,
T.
,
2003
, “
Cell and Organ Printing 1: Protein and Cell Printers
,”
Anat. Rec.
,
272A
(
2
), pp.
491
496
.10.1002/ar.a.10057
34.
Campbell
,
G.
, and
Weiss
,
E.
,
2007
, “
Tissue Engineering With the Aid of Inkjet Printers
,”
Expert Opin. Biol. Ther.
,
7
(
8
), pp.
1123
1127
.10.1517/14712598.7.8.1123
35.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
.10.1016/j.biomaterials.2004.04.011
36.
Yamazoe
,
H.
, and
Tanabe
,
T.
,
2009
, “
Cell Micro Patterning on an Albumin-Based Substrate Using an Inkjet Printing Technique
,”
J. Biomed. Mater. Res.
,
91A
(
4
), pp.
1202
1209
.10.1002/jbm.a.32312
37.
Nakamura
,
M.
,
Kobayashi
,
A.
,
Takagi
,
F.
,
Watanabe
,
A.
,
Hiruma
,
Y.
,
Ohuchi
,
K.
,
Iwasaki
,
Y.
,
Horie
,
M.
,
Morita
,
I.
, and
Takatani
,
S.
,
2005
, “
Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells
,”
Tissue Eng.
,
11
(
11–12
), pp.
1658
1666
.10.1089/ten.2005.11.1658
38.
Smith
,
M.
,
Stone
,
L.
,
Parkhill
,
L.
,
Stewart
,
L.
,
Simpkins
,
W.
,
Kachurin
,
M.
,
Warren
,
L.
, and
Williams
,
K.
,
2004
, “
Three-Dimensional Bioassembly Tool for Generating Viable Tissue-Engineered Constructs
,”
Tissue Eng.
,
10
(
9–10
), pp.
1566
1576
.10.1089/ten.2004.10.1566
39.
Skardal
,
A.
,
Zhang
,
J.
,
McCoard
,
L.
,
Xu
,
X.
, and
Oottamasathien
,
S.
,
2010
, “
Prestwich Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting
,”
Tissue Eng., Part A
,
16
(
8
), pp.
2675
2685
.10.1089/ten.tea.2009.0798
40.
Skardal
,
A.
,
Zhang
,
J.
, and
Prestwich
,
G.
,
2010
, “
Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinked With Tetrahedral Polyethylene Glycol Tetracrylates
,”
Biomaterials
,
31
(
24
), pp.
6173
6181
.10.1016/j.biomaterials.2010.04.045
41.
Lee
,
Y.
,
Polio
,
S.
,
Lee
,
W.
,
Dai
,
G.
,
Menon
,
L.
, and
Carroll
,
R.
,
2010
, “
Bio-Printing of Collagen and VEGF-Releasing Fibrin Gel Scaffolds for Neural Stem Cell Culture
,”
Exp. Neurol.
,
223
(
2
), pp.
645
652
.10.1016/j.expneurol.2010.02.014
42.
Moon
,
S.
,
Hasan
,
K.
,
Song
,
S.
,
Xu
,
F.
,
Keles
,
O.
, and
Manzur
,
F.
,
2010
, “
Layer by Layer Three-Dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets
,”
Tissue Eng., Part C
,
16
(
1
), pp.
157
166
.10.1089/ten.tec.2009.0179
43.
Jakab
,
K.
,
Norotte
,
C.
,
Damon
,
B.
,
Marga
,
F.
,
Neagu
,
A.
,
Besch-Williford
,
L.
,
Kachurin
,
A.
,
Church
,
K.
,
Park
,
H.
,
Mironov
,
V.
,
Markwald
,
R.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2008
, “
Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures
,”
Tissue Eng., Part A
,
14
(
3
), pp.
413
421
.10.1089/tea.2007.0173
44.
Smith
,
C.
,
Christian
,
J.
,
Warren
,
W.
, and
Williams
,
S.
,
2007
, “
Characterizing Environmental Factors That Impact the Viability of Tissue-Engineered Constructs Fabricated by a Direct-Write Bio-Assembly Tool
,”
Tissue Eng.
,
13
(
2
), pp.
373
383
.10.1089/ten.2006.0101
45.
Cui
,
X.
,
Gao
,
G.
,
Yonezawa
,
T.
, and
Dai
,
G.
,
2014
, “
Human Cartilage Tissue Fabrication Using Three-Dimensional Inkjet Printing Technology
,”
J. Vis. Exp.
,
10
(
88
), p.
e51294
.
46.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
,
2006
, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotechnol. J.
,
1
(
9
), pp.
910
917
.10.1002/biot.200600081
47.
Phillippi
,
A.
,
Miller
,
E.
,
Weiss
,
L.
,
Huard
,
J.
,
Waggoner
,
A.
, and
Campbell
,
P.
,
2008
Microenvironments Engineered by Inkjet Bioprinting Spatially Direct Adult Stem Cells Toward Muscle- and Bone-Like Subpopulations
,”
Stem Cells
,
26
(
1
), pp.
127
134
.10.1634/stemcells.2007-0520
48.
Saunder
,
E.
,
Gough
,
J.
, and
Derby
,
B.
,
2008
, “
Delivery of Human Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing
,”
Biomaterials
,
29
(
2
), pp.
193
203
.10.1016/j.biomaterials.2007.09.032
49.
Xu
,
T.
,
Gregory
,
C.
,
Molnar
,
P.
,
Cui
,
X.
,
Jalota
,
S.
,
Bhaduri
,
S.
, and
Boland
,
T.
,
2006
, “
Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method
,”
Biomaterials
,
27
(
19
), pp.
3580
3588
.10.1016/j.biomaterials.2006.01.048
50.
Yamazoe
,
H.
, and
Tanabe
,
T.
,
2009
, “
Cell Micro-Patterning on an Albumin-Based Substrate Using an Inkjet Printing Technique
,”
J. Biomed. Mater. Res., Part A
,
91
(
4
), pp.
1202
1209
.10.1002/jbm.a.32312
51.
Derby
,
B.
,
2008
, “
Bioprinting: Inkjet Printing Proteins and Hybrid Cell-Containing Materials and Structures
,”
J. Mater. Chem.
,
18
(
47
), pp.
5717
5721
.10.1039/b807560c
52.
Le Hue
,
P.
,
1998
, “
Progress and Trends in Inkjet Printing Technology
,”
J. Imaging Sci. Technol.
,
42
(
1
), pp.
49
62
.
53.
Stachowiak
,
J.
,
Richmond
,
D.
,
Li
,
T.
,
Brochard
,
F.
, and
Fletcher
,
A.
,
2009
, “
Inkjet Formation of Unilamellar Lipid Vesicles for Cell-Like Encapsulation
,”
Lab Chip
,
9
(
14
), pp.
2003
2009
.10.1039/b904984c
54.
Xu
,
T.
,
Zhao
,
W.
,
Zhu
,
J.
,
Albanna
,
M.
,
Yoo
,
J.
, and
Atala
,
A.
,
2013
, “
Complex Heterogeneous Tissue Constructs Containing Multiple Cell Types Prepared by Inkjet Printing Technology
,”
Biomaterials
,
34
(
1
), pp.
130
139
.10.1016/j.biomaterials.2012.09.035
55.
Cui
,
X.
,
Dean
,
D.
,
Ruggeri
,
Z.
, and
Boland
,
T.
,
2010
, “
Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells
,”
Biotechnol. Bioeng.
,
106
(
6
), pp.
963
969
.10.1002/bit.22762
56.
Barbara
,
L.
,
Wen-Kai
,
H.
,
Ian
,
M.
, and
Keith
,
R.
,
2014
, “
Adult Rat Retinal Ganglion Cells and Glia Can Be Printed by Piezoelectric Inkjet Printing
,”
Biofabrication
,
6
(
1
), p.
015001
.10.1088/1758-5082/6/1/015001
57.
Cui
,
X.
, and
Boland
,
T.
,
2009
, “
Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology
,”
Biomaterials
,
30
(
31
), pp.
6221
6227
.10.1016/j.biomaterials.2009.07.056
58.
Weiss
,
L.
,
Amon
,
C.
,
Finger
,
S.
,
Miller
,
E.
, and
Romero
,
D.
,
2005
, “
Bayesian Computer-Aided Experimental Design of Heterogenous Scaffolds for Tissue Engineering
,”
Comput. Aided Des.
,
37
(
11
), pp.
1127
1139
.10.1016/j.cad.2005.02.004
59.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
, and
Marwald
,
R.
,
2012
, “
Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes
,”
Biotechnol. Bioeng.
,
109
(
12
), pp.
3152
3160
.10.1002/bit.24591
60.
Xu
,
C.
,
Huang
,
Y.
, and
Markwald
,
R.
,
2013
, “
Vertical and Horizontal Fabrication of Alginate-Based Vascular-Like Constructs Using Inkjetting
,”
Proceedings of 23th International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 6–8, pp.
1
9
.
61.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
.10.1021/la501430x
62.
Roda
,
A.
,
Guardigli
,
M.
,
Russo
,
C.
,
Pasini
,
P.
, and
Baraldini
,
M.
,
2000
, “
Protein Microdeposition Using a Conventional Ink-Jet Printer
,”
Biotechniques
,
28
(
3
), pp.
492
496
.
63.
Watanabe
,
K.
,
Miyazaki
,
T.
, and
Matsuda
,
R.
,
2003
, “
Fabrication of Growth Factor Array by Color Inkjet Printer
,”
Zool. Sci.
,
20
(
4
), pp.
429
434
.10.2108/zsj.20.429
64.
Campbell
,
P.
,
Miller
,
E.
,
Fisher
,
G.
,
Walker
,
L.
, and
Weiss
,
L.
,
2005
, “
Engineered Spatial Patterns of FGF-2 Immobilized on Fibrin Direct Cell Organization
,”
Biomaterials
,
26
(
33
), pp.
6762
6770
.10.1016/j.biomaterials.2005.04.032
65.
Mironov
,
V.
,
Boland
,
T.
,
Trusk
,
T.
,
Forgacs
,
G.
, and
Markwald
,
R.
,
2003
, “
Organ Printing: Computer Aided Jet-Based 3D Tissue Engineering
,”
Trends Biotechnol.
,
21
(
4
), pp.
157
161
.10.1016/S0167-7799(03)00033-7
66.
Calvert
,
P.
,
2001
, “
Inkjet Printing for Materials and Devices
,”
Mater. Sci. Eng.
,
13
(
10
), pp.
3299
3305
.10.1021/cm0101632
67.
Odde
,
D.
, and
Renn
,
M.
,
1999
, “
Laser-Guided Direct Writing for Applications in Biotechnology
,”
Trends Biotechnol.
,
17
(
10
), pp.
385
389
.10.1016/S0167-7799(99)01355-4
68.
Wang
,
W.
,
Li
,
Gang
, and
Huang
,
Y.
,
2009
, “
Modeling of Bubble Expansion-Induced Cell Mechanical Profile in Laser-Assisted Cell Direct Writing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051013
.10.1115/1.4000101
69.
Lothar
,
K.
,
Stefanie
,
K.
,
Heiko
,
S.
,
Martin
,
G.
,
Sabrina
,
S.
,
Ralf
,
G.
,
Bianca
,
P.
,
Kerstin
,
R.
,
Stephanie
,
S.
,
Nan
,
M.
,
Peter
,
M.
,
Gustav
,
S.
, and
Boris
,
C.
,
2010
, “
Laser Printing of Skin Cells and Human Stem Cells
,”
Tissue Eng.
,
16
(
5
), pp.
847
854
.10.1089/ten.tec.2009.0397
70.
Nathan
,
R.
,
Ryan
,
A.
,
David
,
T.
,
Karen
,
S.
,
Deanna
,
M.
,
Lee
,
A.
,
Thomas
,
K.
, and
Douglas
,
B.
,
2009
, “
Laser Direct Writing of Combinatorial Libraries of Idealized Cellular Constructs: Biomedical Applications
,”
Appl. Surf. Sci.
,
255
(
10
), pp.
5444
5447
.10.1016/j.apsusc.2008.10.054
71.
Ovsianikov
,
A.
,
Gruene
,
M.
,
Pflaum
,
M.
,
Koch
,
L.
,
Maiorana
,
F.
,
Wilhelmi
,
M.
,
Haverich
,
A.
, and
Chichkov
,
B.
,
2010
, “
Laser Printing of Cells Into 3D Scaffolds
,”
Biofabrication
,
2
(
1
), p.
014104
.10.1088/1758-5082/2/1/014104
72.
Barron
,
J.
,
Ringeisen
,
B.
,
Kim
,
H.
,
Spargo
,
B.
, and
Chrisey
,
D.
,
2004
, “
Application of Laser Printing to Mammalian Cells
,”
Thin Solid Films
,
453
(
383
), pp.
383
387
.10.1016/j.tsf.2003.11.161
73.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
, 2008, “Direct Writing Technology—Advances and Developments,”
CIRP Ann. Manufact. Tech.
,
57
(2), pp. 601–620.10.1016/j.cirp.2008.09.006
74.
Guillotin
,
B.
,
Souquet
,
A.
,
Catros
,
S.
,
Duocastella
,
M.
,
Pippenger
,
B.
, and
Bellance
,
S.
,
2010
, “
Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization
,”
Biomaterials
,
31
(
28
), pp.
7250
7256
.10.1016/j.biomaterials.2010.05.055
75.
Gudapati
,
H.
,
Yan
,
J.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2014
, “
Alginate Gelation-Induced Cell Death During Laser-Assisted Cell Printing
,”
Biofabrication
,
6
(
3
), p.
035022
.10.1088/1758-5082/6/3/035022
76.
Mironov
,
V.
,
2003
, “
Printing Technology to Produce Living Tissue
,”
Expert Opin. Biol. Ther.
,
3
(
5
), pp.
701
704
.10.1517/14712598.3.5.701
77.
Melchels
,
F.
,
Domingos
,
M.
,
Klein
,
T.
,
Malda
,
J.
,
Bartolo
,
P.
, and
Hutmacher
,
D.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.10.1016/j.progpolymsci.2011.11.007
78.
Yan
,
Y.
,
Wang
,
X.
,
Pan
,
Y.
,
Liu
,
H.
,
Cheng
,
J.
,
Xiong
,
Z.
,
Lin
,
F.
,
Wu
,
R.
,
Zhang
,
R.
, and
Lu
,
Q.
,
2005
, “
Fabrication of Viable Tissue-Engineered Constructs With 3D Cell-Assembly Technique
,”
Biomaterials
,
26
(
29
), pp.
5864
5871
.10.1016/j.biomaterials.2005.02.027
79.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
,
11
(
1
), pp.
9
17
.10.1108/13552540510573347
80.
Lee
,
W.
,
Debasitis
,
C.
,
Lee
,
K.
,
Lee
,
H.
,
Fischer
,
K.
, and
Edminster
,
K.
,
2009
, “
Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes Through Three-Dimensional Freeform Fabrication
.,”
Biomaterials
,
30
(
8
), pp.
1587
1595
.10.1016/j.biomaterials.2008.12.009
81.
Chang
,
R.
,
Nam
,
J.
, and
Sun
,
W.
,
2008
, “
Direct Cell Writing of 3D Micro-Organ for in vitro Pharmacokinetic Model
,”
Tissue Eng.
,
14
(
2
), pp.
157
169
.10.1089/ten.tec.2007.0392
82.
Khalil
,
S.
, and
Sun
,
W.
,
2007
, “
Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs
,”
Mater. Sci. Eng.
,
27
(
3
), pp.
469
478
.10.1016/j.msec.2006.05.023
83.
Nair
,
K.
,
Yan
,
K.
, and
Sun
,
W.
,
2007
, “
A Multi-Level Numerical Model for Qunatifying Cell Deformation in Encapsulated Alginate Structures
,”
J. Mech. Mater. Struct.
,
2
(
6
), pp.
1121
1139
.10.2140/jomms.2007.2.1121
84.
Shim
,
J.
,
Lee
,
J.
,
Kim
,
J.
, and
Cho
,
D.
,
2012
, “
Bioprinting of a Mechanically Enhanced Three-Dimensional Dual Cell-Laden Construct for Osteochondral Tissue Engineering Using a Multi-Head Tissue/Organ Building System
,”
J. Micromech. Microeng.
,
22
(
8
), p.
085014
.10.1088/0960-1317/22/8/085014
85.
Zhang
,
Y.
,
Yu
,
Y.
,
Chen
,
H.
, and
Ozbolat
,
I. T.
,
2013
, “
Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering
,”
Biofabrication
,
5
(
2
), p.
024004
.10.1088/1758-5082/5/2/025004
86.
Zhang
,
Y.
,
Yu
,
Y.
, and
Ozbolat
,
I. T.
,
2013
, “
Direct Bioprinting of Vessel-Like Tubular Microfluidic Channels
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
021001
.10.1115/1.4024398
87.
Dolati
,
F.
,
Yu
,
Y.
,
Zhang
,
Y.
,
Jesus
,
A. M. D.
,
Sander
,
E. A.
, and
Ozbolat
,
I. T.
,
2014
, “
In Vitro Evaluation of Carbon-Nanotube-Reinforced Bioprintable Vascular Conduits
,”
Nanotechnology
,
25
(
14
), p.
145101
.10.1088/0957-4484/25/14/145101
88.
Lee
,
V. K.
,
Kim
,
D. Y.
,
Ngo
,
H.
,
Lee
,
Y.
,
Seo
,
L.
,
Yoo
,
S.-S.
,
Vincent
,
P. A.
, and
Dai
,
G.
,
2014
, “
Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology
,”
Biomaterials
,
35
(
28
), pp.
8092
8102
.10.1016/j.biomaterials.2014.05.083
89.
Kolesky
,
D.
,
Truby
,
R.
,
Gladman
,
A.
,
Busbee
,
T.
,
Homan
,
K.
, and
Lewis
,
J.
,
2014
, “
Bioprinting: 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
2966
2966
.10.1002/adma.201470124
90.
Wu
,
W.
,
DeConinck
,
A.
, and
Lewis
,
J.
,
2011
, “
Omnidirectional Printing of 3D Microvascular Networks
,”
Adv. Mater.
,
23
(
24
), pp.
H178
H183
.10.1002/adma.201004625
91.
Miller
,
J.
,
Stevens
,
K.
,
Yang
,
M.
,
Baker
,
B.
,
Nguyen
,
D.-H.
,
Cohen
,
D.
,
Toro
,
E.
,
Chen
,
A.
,
Galie
,
P.
,
Yu
,
X.
,
Chaturvedi
,
R.
,
Bhatia
,
S.
, and
Chen
,
C.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
9
), pp.
768
774
.10.1038/nmat3357
92.
Bertassoni
,
L.
,
Cardoso
,
J.
,
Manoharan
,
V.
,
Cristino
,
A.
,
Bhise
,
N.
,
Araujo
,
W.
,
Zorlutuna
,
P.
,
Vrana
,
N.
,
Ghaemmaghami
,
A.
,
Dokmeci
,
M.
, and
Khademhosseini
,
A.
,
2014
, “
Direct-Write Bioprinting of Cell-Laden Methacrylated Gelatin Hydrogels
,”
Biofabrication
,
6
(
2
), p.
024105
.10.1088/1758-5082/6/2/024105
93.
Bertassoni
,
L.
,
Cecconi
,
M.
,
Manoharan
,
V.
,
Nikkhah
,
M.
,
Hjortnaes
,
J.
,
Cristino
,
A.
,
Barabaschi
,
G.
,
Demarchi
,
D.
,
Dokmeci
,
M.
,
Yang
,
Y.
, and
Khademhosseini
,
A.
,
2014
, “
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
,”
Lab Chip
,
14
(
13
), pp.
2202
2211
.10.1039/c4lc00030g
94.
Ozturk
,
M.
,
Lee
,
V.
,
Zhao
,
L.
,
Dai
,
G.
, and
Intes
,
X.
,
2013
, “
Mesoscopic Fluorescence Molecular Tomography of Reporter Genes in Bioprinted Thick Tissue
,”
J. Biomed. Opt.
,
18
(
10
), p.
100501
.10.1117/1.JBO.18.10.100501
95.
Zhao
,
L.
,
Lee
,
V. K.
,
Yoo
,
S.-S.
,
Dai
,
G.
, and
Intes
,
X.
,
2012
, “
The Integration of 3-D Cell Printing and Mesoscopic Fluorescence Molecular Tomography of Vascular Constructs Within Thick Hydrogel Scaffolds
,”
Biomaterials
,
33
(
21
), pp.
5325
5332
.10.1016/j.biomaterials.2012.04.004
96.
Lee
,
V.
,
Lanzi
,
A.
,
Ngo
,
H.
,
Yoo
,
S.-S.
,
Vincent
,
P.
, and
Dai
,
G.
,
2014
, “
Generation of Multi-Scale Vascular Network System Within 3D Hydrogel Using 3D Bio-Printing Technology
,”
Cell. Mol. Bioeng.
,
7
(
3
), pp.
1
13
.10.1007/s12195-013-0317-4
97.
Yu
,
Y.
,
Zhang
,
Y.
,
Martin
,
J.
, and
Ozbolat
,
I.
,
2013
, “
Evaluation of Cell Viability and Functionality in Vessel-Like Bioprintable Cell-Laden Tubular Channels
,”
Biomech. Eng.
,
135
(
9
), p.
091011
.10.1115/1.4024575
98.
Tirella
,
A.
,
Vozzi
,
F.
,
Vozzi
,
G.
, and
Ahluwalia
,
A.
,
2011
, “
PAM2 (Piston Assisted Microsyringe): A New Rapid Prototyping Technique for Biofabrication of Cell Incorporated Scaffolds
,”
Tissue Eng., Part C
,
17
(
2
), pp.
229
237
.10.1089/ten.tec.2010.0195
99.
Jos
,
M.
,
Jetze
,
V.
,
Ferry
,
P.
,
Tomasz
,
J.
,
Wim
,
E.
,
Wouter
,
J.
,
Jürgen
,
G.
, and
Dietmar
,
W.
,
2013
, “
25th Anniversary Article: Engineering Hydrogels for Biofabrication
,”
Adv. Mater.
,
25
(
36
), pp.
5011
5028
.10.1002/adma.201302042
100.
Wu
,
P.
,
Ringeisen
,
B.
,
Callahan
,
J.
,
Brooks
,
M.
,
Bubb
,
D.
,
Wu
,
H.
,
Piqué
,
A.
,
Spargo
,
B.
,
McGill
,
R.
, and
Chrisey
,
D.
,
2001
, “
The Deposition, Structure, Patterned Position, and Activity of Biomaterial Thin-Films by Matrix-Assisted Pulsed-Laser Evaporation (MAPLE) and MAPLE Direct Write
,”
Thin Solid Films
,
398
(
1
), pp.
607
614
.10.1016/S0040-6090(01)01347-5
101.
Raof
,
N.
,
Schiele
,
N.
,
Xie
,
Y.
,
Chrisey
,
D.
, and
Corr
,
D.
,
2011
, “
The Maintenance of Pluripotency Following Laser Direct-Write of Mouse Embryonic Stem Cells
,”
Biomaterials
,
32
(
7
), pp.
1802
1808
.10.1016/j.biomaterials.2010.11.015
102.
Keriquel
,
V.
,
Guillemot
,
F.
,
Arnault
,
I.
,
Guillotin
,
B.
,
Miraux
,
S.
,
Amedee
,
J.
,
Fricain
,
J.
, and
Catros
,
S.
,
2010
, “
In Vivo Bioprinting for Computer- and Robotic-Assisted Medical Intervention: Preliminary Study in Mice
,”
Biofabrication
,
2
(
1
), p.
014101
.10.1088/1758-5082/2/1/014101
103.
Kattamis
,
N.
,
McDaniel
,
N.
,
Bernhard
,
S.
, and
Arnold
,
C.
,
2009
, “
Laser Direct Write Printing of Sensitive and Robust Light Emitting Organic Molecules
,”
Appl. Phys. Lett.
,
94
(
10
), p.
103306
.10.1063/1.3098375
104.
Colina
,
M.
,
Duocastella
,
M.
,
Fernandez-Pradas
,
J.
,
Serra
,
P.
, and
Morenza
,
J.
,
2006
, “
Laser-Induced Forward Transfer of Liquids: Study of the Droplet Ejection Process
,”
J. Appl. Phys.
,
99
(
8
), p.
084909
.10.1063/1.2191569
105.
Nahmias
,
Y.
, and
Odde
,
J.
,
2006
, “
Micropatterning of Living Cells by Laser-Guided Direct Writing: Application to Fabrication of Hepatic-Endothelial Sinusoid-Like Structures
,”
Nat. Protoc.
,
1
(
5
), pp.
2288
2296
.10.1038/nprot.2006.386
106.
Boland
,
T.
,
Tao
,
X.
,
Damon
,
B.
,
Manley
,
B.
,
Kesari
,
P.
,
Jalota
,
S.
, and
Bhaduri
,
S.
,
2007
, “
Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs
,”
Mater. Sci. Eng., Part C
,
27
(
3
), pp.
372
376
.10.1016/j.msec.2006.05.047
107.
Nishiyama
,
Y.
,
Nakamura
,
M.
,
Henmi
,
C.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Nakagawa
,
H.
,
Tsui
,
B. M. W.
, and
Hoffman
,
J.
,
2007
, “
Fabrication of 3D Cell Supporting Structures With Multi-Materials Using the Bio-Printer
,”
ASME
Paper No. MSEC2007-31064.10.1115/MSEC2007-31064
108.
Roth
,
E.
,
Xu
,
T.
,
Das
,
M.
,
Gregory
,
C.
,
Hickman
,
J.
, and
Boland
,
T.
,
2004
, “
Inkjet Printing for High-Throughput Cell Patterning
,”
Biomaterials
,
25
(
17
), pp.
3707
3715
.10.1016/j.biomaterials.2003.10.052
109.
Saunders
,
R.
,
Gough
,
J.
, and
Derby
,
B.
,
2008
, “
Delivery of Human Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing
,”
Biomaterials
,
29
(
2
), pp.
193
203
.10.1016/j.biomaterials.2007.09.032
110.
Xu
,
T.
,
Kincaid
,
H.
,
Atala
,
A.
, and
Yoo
,
J.
,
2008
, “
High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021017
.10.1115/1.2903064
111.
Xu
,
W.
,
Wang
,
H.
,
Yan
,
N.
,
Zheng
,
W.
,
Xiong
,
Z.
,
Lin
,
F.
,
Wu
,
D.
, and
Zhang
,
J.
,
2007
, “
Rapid Prototyping Three-Dimensional Cell/Gelatin/Fibrinogen Constructs for Medical Regeneration
,”
J. Bioact. Compat. Polym.
,
22
(
4
), pp.
363
377
.10.1177/0883911507079451
112.
Demirci
,
U.
, and
Montesano
,
G.
,
2007
, “
Cell Encapsulating Droplet Vitrification
,”
Lab Chip
,
7
(
11
), pp.
1428
1433
.10.1039/b705809h
113.
Song
,
S.
,
Adler
,
D.
,
Xu
,
F.
,
Kayaalp
,
E.
,
Nureddin
,
A.
,
Raymond
,
A.
,
Maas
,
R.
, and
Demirci
,
U.
,
2010
, “
Vitrification and Levitation of a Liquid Droplet on Liquid Nitrogen
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
10
), pp.
4596
4600
.10.1073/pnas.0914059107
114.
Moon
,
S.
,
Kim
,
Y.
,
Dong
,
L.
,
Lombardi
,
M.
,
Haeggstrom
,
E.
,
Jensen
,
R.
,
Hsiao
,
L.
, and
Demirci
,
H.
,
2011
, “
Drop-on-Demand Single Cell Isolation and Total RNA Analysis
,”
PLoS ONE
,
6
(
3
), p.
17455
.10.1371/journal.pone.0017455
115.
Censi
,
R.
,
Schuurman
,
W.
,
Malda
,
J.
,
Di Dato
,
G.
,
Burgisser
,
P.
,
Dhert
,
W.
,
Van Nostrum
,
C.
,
Di Martino
,
P.
,
Vermonden
,
T.
, and
Hennink
,
E.
,
2011
, “
Printable Photopolymerizable Thermosensitive p(HPMA-lactate)-PEG Hydrogel for Tissue Engineering
,”
Adv. Funct. Mater.
,
21
(
10
), pp.
1833
1842
.10.1002/adfm.201002428
116.
Cohen
,
D.
,
Malone
,
E.
,
Lipson
,
H.
, and
Bonassar
,
L.
,
2006
, “
Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries
,”
Tissue Eng.
,
12
(
5
), pp.
1325
1335
.10.1089/ten.2006.12.1325
117.
Yan
,
Y.
,
Wang
,
X.
,
Xiong
,
Z.
,
Liu
,
H.
,
Liu
,
F.
,
Lin
,
F.
,
Wu
,
R.
,
Zhang
,
R.
, and
Lu
,
Q.
,
2005
, “
Direct Construction of a Three-Dimensional Structure With Cells and Hydrogel
,”
J. Bioact. Compat. Polym.
,
20
(
3
), pp.
259
269
.10.1177/0883911505053658
118.
Wang
,
X.
,
Yan
,
Y.
,
Pan
,
Y.
,
Xiong
,
Z.
,
Liu
,
H.
,
Cheng
,
B.
,
Liu
,
F.
,
Lin
,
F.
,
Wu
,
R.
,
Zhang
,
R.
, and
Lu
,
Q.
,
2006
, “
Generation of Three-Dimensional Hepatocyte/Gelatin Structures With Rapid Prototyping System
,”
Tissue Eng.
,
12
(
1
), pp.
83
90
.10.1089/ten.2006.12.83
119.
Fedorovich
,
N.
,
De Wijn
,
J.
,
Verbout
,
A.
,
Alblas
,
J.
, and
Dhert
,
W.
,
2008
, “
Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing
,”
Tissue Eng., Part A
,
14
(
1
), pp.
127
133
.10.1089/ten.a.2007.0158
120.
Li
,
S.
,
Yan
,
Y.
,
Xiong
,
Z.
,
Weng
,
C.
,
Zhang
,
R.
, and
Wang
,
X.
,
2009
, “
Gradient Hydrogel Construct Based on an Improved Cell Assembling System
,”
J. Bioact. Compat. Polym.
,
24
(
1
), pp.
84
99
.10.1177/0883911509103357
121.
Pescosolido
,
L.
,
Schuurman
,
W.
,
Malda
,
J.
,
Matricardi
,
P.
,
Alhaique
,
F.
,
Coviello
,
T.
,
Weeren
,
P.
,
Dhert
,
W.
,
Hennink
,
W.
, and
Vermonden
,
T.
,
2011
, “
Hyaluronic Acid and Dextran Based Semi-IPN Hydrogels as Biomaterials for Bioprinting
,”
Biomacromolecules
,
12
(
5
), pp.
1831
1838
.10.1021/bm200178w
122.
Johnson
,
H.
,
Sina
,
N.
,
Zhilian
,
Y.
,
Robert
,
K.
,
Anita
,
Q.
,
Simon
,
E.
, and
Gordon
,
G.
,
2013
, “
Bio-Ink Properties and Printability for Extrusion Printing Living Cells
,”
Biomater. Sci.
,
1
(
7
), pp.
763
773
.10.1039/c3bm00012e
123.
Patterson
,
J.
,
Martino
,
M.
, and
Hubbell
,
A.
,
2010
, “
Biomimetic Materials in Tissue Engineering
,”
Mater. Today
,
13
(
1–2
), pp.
14
22
.10.1016/S1369-7021(10)70013-4
124.
Hunt
,
N.
, and
Grover
,
L.
,
2010
, “
Cell Encapsulation Using Biopolymer Gels for Regenerative Medicine
,”
Biotechnol. Lett.
,
32
(
6
), pp.
733
742
.10.1007/s10529-010-0221-0
125.
Spiller
,
K.
,
Maher
,
S.
, and
Lowman
,
A.
,
2011
, “
Hydrogels for the Repair of Articular Cartilage Defects
,”
Tissue Eng., Part B
,
17
(
4
), pp.
281
299
.10.1089/ten.teb.2011.0077
126.
Dash
,
M.
,
Chiellini
,
F.
,
Ottenbrite
,
R.
, and
Chiellini
,
E.
,
2011
, “
Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications
,”
Prog. Polym. Sci.
,
36
(
8
), pp.
981
1014
.10.1016/j.progpolymsci.2011.02.001
127.
Censi
,
R. S. W.
,
Malda
,
J.
,
di Dato
,
G.
,
Burgisser
,
P.
,
Dhert
,
W.
,
van Nostrum
,
C.
,
di Martino
,
P.
,
Vermonden
,
T.
, and
Hennink
,
W.
,
2011
, “
A Printable Photopolymerizable Thermosensitive p(HPMAm-Lactate)-PEG Hydrogel for Tissue Engineering
,”
Adv. Funct. Mater.
,
21
(
10
), pp.
1833
1842
.10.1002/adfm.201002428
128.
Fedorovich
,
E.
,
De Wijn
,
R.
,
Verbout
,
J.
,
Alblas
,
J.
, and
Dhert
,
J.
,
2008
, “
Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing
,”
Tissue Eng., Part A
,
14
(
1
), pp.
127
133
.10.1089/ten.a.2007.0158
129.
Fedorovich
,
N.
,
Swennen
,
I.
,
Girones
,
J.
,
Moroni
,
V.
,
Blitterswijk
,
C.
,
Schacht
,
E.
,
Alblas
,
J.
, and
Dhert
,
W.
,
2009
, “
Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications
,”
Biomacromolecules
,
10
(
7
), pp.
1689
1696
.10.1021/bm801463q
130.
Lutolf
,
M.
,
Gilbert
,
P.
, and
Blau
,
H.
,
2009
, “
Designing Materials to Direct Stem-Cell Fate
,”
Nature
,
462
(
7272
), pp.
433
441
.10.1038/nature08602
131.
Nuttelman
,
C.
,
Rice
,
M.
,
Rydholm
,
A.
,
Salinas
,
C.
,
Shah
,
D.
, and
Anseth
,
K.
,
2008
, “
Macromolecular Monomers for the Synthesis of Hydrogel Niches and Their Application in Cell Encapsulation and Tissue Engineering
,”
Prog. Polym. Sci.
,
33
(
2
), pp.
167
179
.10.1016/j.progpolymsci.2007.09.006
132.
Nicodemus
,
G.
, and
Bryant
,
S.
,
2008
, “
Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications
,”
Tissue Eng., Part B
,
14
(
2
), pp.
149
165
.10.1089/ten.teb.2007.0332
133.
Lutolf
,
P.
,
Lauer-Fields
,
L.
,
Schmoekel
,
G.
,
Metters
,
T.
,
Weber
,
E.
,
Fields
,
B.
, and
Hubbell
,
A.
,
2003
, “
Synthetic Matrix Metalloproteinasesensitive Hydrogels for the Conduction of Tissue Regeneration: Engineering Cell-Invasion Characteristics
,”
Proc. Natl. Acad. Sci. U.S.A
,
100
(
9
), pp.
5413
5418
.10.1073/pnas.0737381100
134.
Rizzi
,
C.
,
Ehrbar
,
M.
,
Halstenberg
,
S.
,
Raeber
,
P.
,
Schmoekel
,
G.
,
Hagenmuller
,
H.
,
Muller
,
R.
,
Weber
,
E.
, and
Hubbell
,
A.
,
2006
, “
Recombinant Protein-Co-PEG Networks as Cell-Adhesive and Proteolytically Degradable Hydrogel Matrixes. Part II: Biofunctional Characteristics
,”
Biomacromolecules
,
7
(
11
), pp.
3019
3029
.10.1021/bm060504a
135.
Tirella
,
A.
,
Orsini
,
A.
,
Vozzi
,
G.
, and
Ahluwalia
,
A.
,
2009
, “
A Phase Diagram for Microfabrication of Geometrically Controlled Hydrogel Scaffolds
,”
Biofabrication
,
1
(
4
), p.
045002
.10.1088/1758-5082/1/4/045002
136.
Khalil
,
S.
, and
Sun
,
W.
,
2009
, “
Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs
,”
Biomech. Eng.
,
131
(
11
), p.
111002
.10.1115/1.3128729
137.
Murphy
,
S.
,
Skardal
,
A.
, and
Atala
,
A.
,
2013
, “
Evaluation of Hydrogels for Bio-Printing Applications
,”
J. Biomed. Mater. Res., Part A
,
101A
(
1
), pp.
272
284
.10.1002/jbm.a.34326
138.
Mironov
,
V.
,
Visconti
,
P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
J.
, and
Markwald
,
R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
30
(
12
), pp.
2164
2174
.10.1016/j.biomaterials.2008.12.084
139.
Whitesides
,
G.
, and
Boncheva
,
M.
,
2002
, “
Beyond Molecules: Self-Assembly of Mesoscopic and Macroscopic Components
,”
Proc. Natl. Acad. Sci. U.S.A.
,
99
(
8
), pp.
4769
4774
.10.1073/pnas.082065899
140.
Whitesides
,
G.
, and
Grzybowski
,
B.
,
2002
, “
Self-Assembly at All Scales
,”
Science
,
295
(
5564
), pp.
2418
2421
.10.1126/science.1070821
141.
John
,
M.
,
Albert
,
P.
,
Andrew
,
O.
, and
Aaron
,
J.
,
1977
, “
A Simplified Method for Production and Growth of Multicellular Tumor Spheroids
,”
Cancer Res.
,
37
(
1
), pp.
3639
3643
.
142.
Savas
,
T.
, and
Utkan
,
D.
,
2013
, “
Bioprinting for Stem Cell Research
,”
Trends Biotechnol.
,
31
(
1
), pp.
10
19
.10.1016/j.tibtech.2012.10.005
143.
Urich
,
E.
,
Patsch
,
C.
,
Aigner
,
S.
,
Graf
,
M.
,
Iacone
,
R.
, and
Freskgard
,
P.
,
2013
, “
Multicellular Self-Assembled Spheroidal Model of the Blood Brain Barrier
,”
Sci. Rep.
,
3
(
1500
), pp.
1
8
.10.1038/srep01500
144.
Lin
,
Z.
, and
Chang
,
Y.
,
2008
, “
Recent Advances in Three-Dimensional Multicellular Spheroid Culture for Biomedical Research
,”
Biotechnol. J.
,
3
(
9–10
), pp.
1172
1184
.10.1002/biot.200700228
145.
Marga
,
F.
,
Neagu
,
A.
,
Kosztin
,
I.
, and
Forgacs
,
G.
,
2007
, “
Developmental Biology and Tissue Engineering
,”
Birth Defects Res.
,
81
(
4
), pp.
320
328
.10.1002/bdrc.20109
146.
Rezende
,
R.
,
Pereira
,
F.
,
Kasyanov
,
V.
,
Kemmoku
,
T.
,
Maia
,
I.
,
da Silva
,
J.
, and
Mironov
,
V.
,
2013
, “
Scalable Biofabrication of Tissue Spheroids for Organ Printing
,”
Procedia CIRP
,
5
(
1
), pp.
276
281
.10.1016/j.procir.2013.01.054
147.
Owens
,
C.
,
Marga
,
F.
,
Forgacs
,
G.
, and
Heesch
,
C.
,
2013
, “
Biofabrication and Testing of a Fully Cellular Nerve Graft
,”
Biofabrication
,
5
(
4
), p.
045007
.10.1088/1758-5082/5/4/045007
148.
Pati
,
F.
,
Jang
,
J.
,
Ha
,
D.-H.
,
Won Kim
,
S.
,
Rhie
,
J.-W.
,
Shim
,
J.-H.
,
Kim
,
D.-H.
, and
Cho
,
D.-W.
,
2014
, “
Printing Three-Dimensional Tissue Analogues With Decellularized Extracellular Matrix Bioink
,”
Nat. Commun.
,
5
(
3935
), pp.
1
11
.10.1038/ncomms4935
149.
Beaman
,
J.
,
Antwood
,
C.
,
Bergman
,
T. L.
,
Bourell
,
D.
,
Hollister
,
S.
, and
Rosen
,
D.
,
2004
, “
Additive/Subtractive Manufacturing Research and Development in Europe
,” Technical Report No. 21224, World Technology Evaluation Center, Inc., Baltimore, MD.
150.
Landers
,
R.
,
Hubner
,
U.
,
Schmelzeisen
,
R.
, and
Muelhaupt
,
R.
,
2002
, “
Rapid Prototyping of Scaffolds Derived From Thermo Reversible Hydrogels and Tailored for Applications in Tissue Engineering
,”
Biomaterials
,
23
(
23
), pp.
4437
4447
.10.1016/S0142-9612(02)00139-4
151.
Manoj
,
V.
,
2013
, “
The Journey From Cell Culture to Bioprinting and Beyond
,”
H+ Magazine
, Mar., p. 1.
152.
Tao
,
X.
,
Rodriguez-Devora
,
J. I.
,
Reyna-Sariano
,
D.
,
Bhuyan
,
M.
,
Zhu
,
L.
,
Wang
,
K.
, and
Yuan
,
Y.
, 2013, “Principles of Bioprinting Technology,” Regenerative Medicine Applications in Organ Transplantation, Elsevier, San Diego, CA, pp. 67–79.
153.
Mironov
,
V.
,
Zhang
,
J.
,
Gentile
,
C.
,
Brakke
,
K.
,
Trusk
,
T.
,
Jakab
,
K.
,
Forgacs
,
G.
,
Kasyanov
,
V.
,
Visconti
,
R.
, and
Markwald
,
R.
,
2009
, “
Designer ‘Blueprint’ for Vascular Trees: Morphology Evolution of Vascular Tissue Constructs
,”
Virtual Phys. Prototyping
,
4
(
2
), pp.
63
74
.10.1080/17452750802657202
154.
Visconti
,
P.
,
Kasyanov
,
V.
,
Gentile
,
C.
,
Zhang
,
J.
,
Markwald
,
R.
, and
Mironov
,
V.
,
2010
, “
Towards Organ Printing: Engineering an Intra-Organ Branched Vascular Tree
,”
Expert Opin. Biol. Ther.
,
10
(
3
), pp.
409
420
.10.1517/14712590903563352
155.
Coatnye
,
S.
,
Gandhi
,
B.
,
Park
,
B.
,
Dzilno
,
D.
,
Tapia
,
E.
,
Kamarthy
,
G.
, and
Sidhu
,
I.
, University of California, B., 2013, "3D Bio-Printing," Fung Technical Report No. 2013.04.17.
156.
2014
, “
Palmetto Printer Manuals
,” http://regmed.musc.edu/atbc/equipment.html
157.
Kwan
,
J.
,
2013
, “
Design of Electronics for a High-Resolution, Multi-Material, and Modular 3D Printer
,” Master thesis, Massachusetts Institute of Technology, Cambridge, MA.
158.
Malone
,
E.
, and
Lipson
,
H.
,
2007
, “
Fab@Home: The Personal Desktop Fabricator Kit
,”
Rapid Prototyping
,
13
(
4
), pp.
245
255
.10.1108/13552540710776197
159.
Song
,
S.
,
Choi
,
J.
,
Park
,
Y.
,
Lee
,
J.
,
Hong
,
S.
, and
Sun
,
K.
,
2010
, “
A Three-Dimensional Bioprinting System for Use With a Hydrogel-Based Biomaterial and Printing Parameter Characterization
,”
Artif. Organ
,
34
(
11
), pp.
1044
1048
.10.1111/j.1525-1594.2010.01143.x
160.
Ozbolat
,
I.
,
Chen
,
H.
, and
Yu
,
Y.
,
2014
, “
Development of Multi-Arm Bioprinter for Hybrid Biofabrication of Tissue Engineering Constructs
,”
Rob. Comput.-Integr. Manuf.
,
30
(
3
), pp.
295
304
.10.1016/j.rcim.2013.10.005
161.
Levato
,
R.
,
Visser
,
J.
,
Planell
,
J. A.
,
Engel
,
E.
,
Malda
,
J.
, and
Mateos-Timoneda
,
M. A.
,
2014
, “
Biofabrication of Tissue Constructs by 3D Bioprinting of Cell-Laden Microcarriers
,”
Biofabrication
,
6
(
3
), p.
035020
.10.1088/1758-5082/6/3/035020
162.
Cohen
,
D.
,
Malone
,
E.
,
Lipson
,
H.
, and
Bonassar
,
L.
,
2006
, “
Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries
,”
Tissue Eng.
,
12
(
5
), pp.
1325
1335
.10.1089/ten.2006.12.1325
163.
Dhariwala
,
B.
,
Hunt
,
E.
, and
Boland
,
T.
, 2004 “
Rapid Prototyping of Tissue-Engineering Constructs Using Photopolymerizable Hydrogels and Stereolithography
,”
Tissue Eng.
,
10
(
9–10
), pp.
1316
1322
.10.1089/ten.2004.10.1316
164.
Liu
,
T.
,
Chen
,
A.
,
Cho
,
L.
,
Jadin
,
K.
,
Sah
,
R.
,
DeLong
,
S.
,
West
,
J.
, and
Bhatia
,
S.
,
2007
, “
Fabrication of 3D Hepatic Tissues by Additive Photo Patterning of Cellular Hydrogels
,”
FASEB J.
,
21
(
3
), pp.
790
801
.10.1096/fj.06-7117com
165.
Wang
,
X.
,
Yan
,
Y.
, and
Zhang
,
R.
,
2007
, “
Rapid Prototyping as a Tool for Manufacturing Bioartificial Liver
,”
Trends Biotechnol.
,
25
(
11
), pp.
505
513
.10.1016/j.tibtech.2007.08.010
You do not currently have access to this content.