The development of freeze-form extrusion fabrication (FEF) process to fabricate three-dimensional (3D) ceramic parts with use of sacrificial material to build support sections during the fabrication process is presented in this paper. FEF is an environmentally friendly, additive manufacturing (AM) process that builds 3D parts in a freezing environment layer-by-layer by computer controlled extrusion and deposition of aqueous colloidal pastes based on computer-aided design (CAD) models. Methyl cellulose was identified as the support material, and alumina was used as the main material in this study. After characterizing the dynamics of extruding alumina and methyl cellulose pastes, a general tracking controller (GTC) was developed and applied to control the extrusion force in depositing both alumina and methyl cellulose pastes. The controller was able to reduce the time constant of the closed-loop system by more than 65% in comparison to the open-loop control system. Freeze-drying was used to remove the water content after the part has been built. The support material was then removed in the binder burnout process. Finally, sintering was done to densify the ceramic part. The fabrication of a cube-shaped part with a square hole in each side that requires depositing the sacrificial material during the FEF process was demonstrated.

References

1.
“Advanced Ceramics Technology Roadmap-Charting Our Course,”
2000
, Sponsored by U.S. Advanced Ceramic Association and U.S Department of Energy, Prepared by Energetics, Inc., and Richerson and Associates.
2.
Rangarajan
,
S.
,
Qi
,
Q.
,
Venkataraman
,
N.
,
Safari
,
A.
, and
Danforth
,
S. C.
,
2000
, “
Powder Processing, Rheology, and Mechanical Properties of Feedstock for Fused Deposition of Si3N4 Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
7
), pp.
1663
1669
.10.1111/j.1151-2916.2000.tb01446.x
3.
Bandyopadhyay
,
A.
,
Panda
,
P.
,
Agarwala
,
M.
,
Danforth
,
S.
, and
Safari
,
A.
,
2000
, “
Processing of Piezocomposites by Fused Deposition Technique
,”
J. Am. Ceram. Soc.
,
80
(
6
), pp.
1366
1372
.10.1111/j.1151-2916.1997.tb02993.x
4.
Lous
,
G. M.
,
Cornejo
,
I. A.
,
McNlty
,
T. F.
,
Safari
,
A.
, and
Danforth
,
S. C.
,
2000
, “
Fabrication of Piezoelectric Ceramic/Polymer Composite Transducers Using Fused Deposition of Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
1
), pp.
124
28
.10.1111/j.1151-2916.2000.tb01159.x
5.
Bandyopadhayay
,
A.
,
Panda
,
R. K.
,
Janas
,
V. F.
,
Agarwala
,
M. K.
,
Danforth
,
S. C.
, and
Safari
,
A.
,
1997
, “
Processing of Piezocomposites by Fused Deposition Technique
,”
J. Am. Ceram. Soc.
,
80
(
6
), pp.
1366
1372
.10.1111/j.1151-2916.1997.tb02993.x
6.
Crump
,
S
.,
1992
, “
Apparatus and Method for Ceramic Three-Dimensional Objects
,” U.S. Patent No. 5,121,329.
7.
Jacobs
,
P. F.
,
1992
, Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography, SME Dearborn, MI.
8.
Griffith
,
M. L.
, and
Halloran
,
J. W.
,
1996
, “
Freeform Fabrication of Ceramics via Stereolithography
,”
J. Am. Ceram. Soc.
,
79
(
10
), pp.
2601
2608
.10.1111/j.1151-2916.1996.tb09022.x
9.
Sachs
,
M. E.
,
Haggerty
,
J. S.
,
Cima
,
M. J.
, and
Williams
,
P. A.
,
1993
, “
Three Dimensional Printing Techniques
,” U.S. Patent No. 5,204,055.
10.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Barlow
,
J. W.
,
Crawford
,
R. H.
, and
McAlea
,
K. P.
,
1997
,
Solid Freeform Fabrication: A New Direction in Manufacturing
,
Kluwer Academic Publishers
, Austin, TX.
11.
Leu
,
M. C.
,
Pattnaik
,
S.
, and
Hilmas
,
G. E.
,
2012
, “
Investigation of Laser Sintering for Freeform Fabrication of Zirconium Diboride Parts
,”
J. Virtual Phys. Prototyping
,
7
(
1
), pp.
25
36
.10.1080/17452759.2012.666119
12.
Cesarano
, III,
J.
,
Segalmen
,
R.
, and
Calvert
,
P.
,
1998
, “
Robocasting Provides Moldless Fabrication From Slurry Deposition
,”
Ceram. Ind.
,
148
(
4
), pp.
94
102
.
13.
Leu
,
M. C.
,
Liu
,
Q.
, and
Bryant
,
F. B.
,
2003
, “
Study of Part Geometric Features and Support Materials in Rapid Freeze Prototyping
,”
Ann. CIRP
,
52
(
1
), pp.
185
188
.10.1016/S0007-8506(07)60561-7
14.
Sui
,
G.
, and
Leu
,
M. C.
,
2007
, “
Investigation of Layer Thickness and Surface Roughness in Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
125
(3), pp.
20
61
.10.1115/1.1556401
15.
Huang
,
T.
,
Mason
,
M. S.
,
Zhao
,
X.
,
Hilmas
,
G. E.
, and
Leu
,
M. C.
,
2009
, “
Aqueous-based Freeze-form Extrusion Fabrication of Alumina Components
,”
Rapid Prototyping J.
,
15
(
2
), pp.
88
95
.10.1108/13552540910943388
16.
Zhao
,
X.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2007
, “
Adaptive-Control of Freeze-Form Extrusion Fabrication Process
,”
ASME
Paper No. DSCC2008-2110.10.1115/DSCC2008-2110
17.
Lewis
,
J. A.
,
Smay
,
J. A.
,
Stuecker
,
J.
, and
Cesarano
, III,
J.
,
2006
, “
Direct Ink Writing of Three-Dimensional Structures
,”
J. Am. Ceram. Soc.
,
89
(
12
), pp.
3599
3609
.10.1111/j.1551-2916.2006.01382.x
18.
Dewey
,
C. S.
,
Lefforge
,
P. K.
, and
Cabot
,
G. L.
,
1932
, “
Moisture Sorption by Carbon Black
,”
Ind. Eng. Chem.
,
24
(
9
), pp.
1045
1050
.10.1021/ie50273a019
19.
Herschel
,
W. H.
, and
Bulkley
,
R.
,
1926
, “
Consistency of Measurements in Rubber-Benzene Solutions
,”
Colloid J.
39
(19), pp.
291
300
.
20.
Li
,
M.
,
Tang
,
L.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2013
, “
Extrusion Process Modeling for Aqueous–Based Ceramic Pastes, Part 1: Constitutive Model
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051008
.10.1115/1.4025014
21.
Li
,
M.
,
Tang
,
L.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2013
, “
Extrusion Process Modeling for Aqueous–based Ceramic Pastes, Part 2: Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051009
.10.1115/1.4025015
22.
Leu
,
M. C.
,
Deuser
,
B. K.
,
Tang
,
L.
,
Landers
,
R. G.
,
Hilmas
,
G. E.
, and
Watts
,
J. L.
,
2012
, “
Freeze-Form Extrusion Fabrication of Functionally Graded Materials
,”
J. Manuf. Technol.—CIRP Ann.
,
61
(
1
), pp.
223
226
.10.1016/j.cirp.2012.03.050
23.
Deuser
,
B. K.
,
Tang
,
L.
,
Landers
,
R. G.
,
Leu
,
M. C.
, and
Hilmas
,
G. E.
,
2013
, “
Hybrid Extrusion Force-Velocity Control Using Freeze-Form Extrusion Fabrication for Functionally Graded Material Parts
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041015
.10.1115/1.4024534
You do not currently have access to this content.