A finite element modeling strategy is developed to allow for the prediction of distortion accumulation in additive manufacturing (AM) large parts (on the order of meters). A 3D thermoelastoplastic analysis is performed using a hybrid quiet inactive element activation strategy combined with adaptive coarsening. At the beginning for the simulation, before material deposition commences, elements corresponding to deposition material are removed from the analysis, then elements are introduced in the model layer by layer in a quiet state with material properties rendering them irrelevant. As the moving energy source is applied on the part, elements are switched to active by restoring the actual material properties when the energy source is applied on them. A layer by layer coarsening strategy merging elements in lower layers of the build is also implemented such that while elements are added on the top of build, elements are merged below maintaining a low number of degrees of freedom in the model for the entire simulation. The effectiveness of the modeling strategy is demonstrated and experimentally validated on a large electron beam deposited Ti–6Al–4V part consisting of 107 deposition layers. The simulation and experiment show good agreement with a maximum error of 29%.

References

1.
Taminger
,
K. M.
, and
Hafley
,
R. A.
,
2003
, “
Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process
,”
Proceedings of the 3rd Annual Automotive Composites Conference
,
Troy, MI
, Sept. 9–10, pp.
1
6
.
2.
Hibbitt
,
H. D.
, and
Marcal
,
P. V.
,
1973
, “
A Numerical, Thermo-Mechanical Model for the Welding and Subsequent Loading of a Fabricated Structure
,”
Comput. Struct.
,
3
(
5
), pp.
1145
1174
.10.1016/0045-7949(73)90043-6
3.
Friedman
,
E.
,
1975
, “
Thermomechanical Analysis of the Welding Process Using the Finite Element Method
,”
ASME J. Pressure Vessel Technol.
,
97
(3), pp.
206
213
.10.1115/1.3454296
4.
Andersson
,
B.
,
1978
, “
Thermal Stresses in a Submerged-Arc Welded Joint Considering Phase Transformations
,”
ASME J. Eng. Mater. Technol.
,
100
(
4
), pp.
356
362
.10.1115/1.3443504
5.
Argyris
,
J. H.
,
Szimmat
,
J.
, and
Willam
,
K. J.
,
1982
, “
Computational Aspects of Welding Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1
), pp.
635
665
.10.1016/0045-7825(82)90126-8
6.
Papazoglou
,
V.
, and
Masubuchi
,
K.
,
1982
, “
Numerical Analysis of Thermal Stresses During Welding Including Phase Transformation Effects
,”
ASME J. Pressure Vessel Technol.
,
104
(
3
), pp.
198
203
.10.1115/1.3264204
7.
Free
,
J. A.
, and
Porter Goff
,
R. F.
,
1989
, “
Predicting Residual Stresses in Multi-Pass Weldments With the Finite Element Method
,”
Comput. Struct.
,
32
(
2
), pp.
365
378
.10.1016/0045-7949(89)90048-5
8.
Tekriwal
,
P.
, and
Mazumder
,
J.
,
1988
, “
Finite Element Analysis of Three-Dimensional Transient Heat Transfer in GMA Welding
,”
Weld. J.
,
67
(
5
), pp.
150
156
.
9.
Michaleris
,
P.
,
Tortorelli
,
D. A.
, and
Vidal
,
C. A.
,
1995
, “
Analysis and Optimization of Weakly Coupled Thermoelastoplastic Systems With Applications to Weldment Design
,”
Int. J. Numer. Methods Eng.
,
38
(
8
), pp.
1259
1285
.10.1002/nme.1620380803
10.
Lindgren
,
L. E.
,
Runnemalm
,
H.
, and
Näsström
,
M. O.
,
1999
, “
Simulation of Multipass Welding of a Thick Plate
,”
Int. J. Numer. Methods Eng.
,
44
(
9
), pp.
1301
1316
.10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
11.
Asadi
,
M.
, and
Goldak
,
J. A.
,
2014
An Integrated Computational Welding Mechanics With Direct-Search Optimization for Mitigation of Distortion in an Aluminum Bar Using Side Heating
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011007
.10.1115/1.4025406
12.
Lindgren
,
L. E.
,
2001
, “
Finite Element Modeling and Simulation of Welding Part 1: Increased Complexity
,”
J. Therm. Stresses
,
24
(
2
), pp.
141
192
.10.1080/01495730150500442
13.
Lindgren
,
L. E.
,
2001
, “
Finite Element Modeling and Simulation of Welding. Part 2: Improved Material Modeling
,”
J. Therm. Stresses
,
24
(
3
), pp.
195
231
.10.1080/014957301300006380
14.
Lindgren
,
L. E.
,
2001
, “
Finite Element Modeling and Simulation of Welding. Part 3: Efficiency and Integration
,”
J. Therm. Stresses
,
24
(
4
), pp.
305
334
.10.1080/01495730151078117
15.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
(
0
), pp.
51
60
.10.1016/j.finel.2014.04.003
16.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2
), pp.
117
123
.10.1016/j.ijmachtools.2003.10.019
17.
Peyre
,
P.
,
Aubry
,
P.
,
Fabbro
,
R.
,
Neveu
,
R.
, and
Longuet
,
A.
,
2008
, “
Analytical and Numerical Modeling of the Direct Metal Deposition Laser Process
,”
J. Phys. D: Appl. Phys.
,
41
(
2
), p.
025403
.10.1088/0022-3727/41/2/025403
18.
Qian
,
L.
,
Mei
,
J.
,
Liang
,
J.
, and
Wu
,
X.
,
2005
, “
Influence of Position and Laser Power on Thermal History and Microstructure of Direct Laser Fabricated Ti–6Al–4V Samples
,”
Mater. Sci. Technol.
,
21
(
5
), pp.
597
605
.10.1179/174328405X21003
19.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process. Powder Sintering Effects
,”
ASME
Paper No. MSEC2012-7253.10.1115/MSEC2012-7253
20.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.10.1115/1.4025746
21.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
22.
Anca
,
A.
,
Fachinotti
,
V. D.
,
Escobar-Palafox
,
G.
, and
Cardona
,
A.
,
2011
, “
Computational Modelling of Shaped Metal Deposition
,”
Int. J. Numer. Methods Eng.
,
85
(
1
), pp.
84
106
.10.1002/nme.2959
23.
Chiumenti
,
M.
,
Cervera
,
M.
,
Salmi
,
A.
,
Agelet de Saracibar
,
C.
,
Dialami
,
N.
, and
Matsui
,
K.
,
2010
, “
Finite Element Modeling of Multi-Pass Welding and Shaped Metal Deposition Processes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
37
), pp.
2343
2359
.10.1016/j.cma.2010.02.018
24.
Lundbäck
,
A.
, and
Lindgren
,
L. E.
,
2011
, “
Modeling of Metal Deposition
,”
Finite Elem. Anal. Des.
,
47
(
10
), pp.
1169
1177
.10.1016/j.finel.2011.05.005
25.
Marimuthu
,
S.
,
Clark
,
D.
,
Allen
,
J.
,
Kamara
,
A.
,
Mativenga
,
P.
,
Li
,
L.
, and
Scudamore
,
R.
,
2012
, “
Finite Element Modeling of Substrate Thermal Distortion in Direct Laser Additive Manufacture of an Aero-Engine Component
,”
Proc. Inst. Mech. Eng., Part C
,
227
(9), pp. 1987–1999.10.1177/0954406212470363
26.
Mughal
,
M.
,
Fawad
,
H.
, and
Mufti
,
R.
,
2006
, “
Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
6
), pp.
875
885
.10.1243/09544062JMES164
27.
Chin
,
R.
,
Beuth
,
J.
, and
Amon
,
C.
,
1995
, “
Control of Residual Thermal Stresses in Shape Deposition Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, Aug., pp.
221
228
.
28.
Klingbeil
,
N.
,
Beuth
,
J.
,
Chin
,
R.
, and
Amon
,
C.
,
2002
, “
Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication
,”
Int. J. Mech. Sci.
,
44
(
1
), pp.
57
77
.10.1016/S0020-7403(01)00084-4
29.
Michaleris
,
P.
,
Feng
,
Z.
, and
Campbell
,
G.
,
1997
, “
Evaluation of 2D and 3D FEA Models for Predicting Residual Stress and Distortion
,” ASME, Conf. Pressure vessels and piping, Orlando, FL, pp.
91
102
.
30.
Zhang
,
L.
, and
Michaleris
,
P.
,
2004
, “
Investigation of Lagrangian and Eulerian Finite Element Methods for Modeling the Laser Forming Process
,”
Finite Elem. Anal. Des.
,
40
(
4
), pp.
383
405
.10.1016/S0168-874X(03)00069-6
31.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Ganguly
,
S.
,
Sequeira Almeida
,
P.
,
Wang
,
F.
, and
Williams
,
S.
,
2011
, “
Thermomechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multilayer Parts
,”
Comput. Mater. Sci.
,
50
(
12
), pp.
3315
3322
.10.1016/j.commatsci.2011.05.020
32.
Berger
,
M. J.
, and
Oliger
,
J.
,
1984
, “
Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
,
53
(
3
), pp.
484
512
.10.1016/0021-9991(84)90073-1
33.
Jasak
,
H.
, and
Gosman
,
A.
,
2000
, “
Automatic Resolution Control for the Finite-Volume Method, Part 1: Aposteriori Error Estimates
,”
Numer. Heat Transfer: Part B
,
38
(
3
), pp.
237
256
.10.1080/10407790050192753
34.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1987
, “
A Simple Error Estimator and Adaptive Procedure for Practical Engineerng Analysis
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
337
357
.10.1002/nme.1620240206
35.
Picasso
,
M.
,
2003
, “
An Anisotropic Error Indicator Based on ZienkiewiczZhu Error Estimator: Application to Elliptic and Parabolic Problems
,”
SIAM J. Sci. Comput.
,
24
(
4
), pp.
1328
1355
.10.1137/S1064827501398578
36.
Berger
,
M. J.
, and
Colella
,
P.
,
1989
, “
Local Adaptive Mesh Refinement for Shock Hydrodynamics
,”
J. Comput. Phys.
,
82
(
1
), pp.
64
84
.10.1016/0021-9991(89)90035-1
37.
Bell
,
J.
,
Berger
,
M.
,
Saltzman
,
J.
, and
Welcome
,
M.
,
1994
, “
Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws
,”
SIAM J. Sci. Comput.
,
15
(
1
), pp.
127
138
.10.1137/0915008
38.
Bank
,
R. E.
,
Sherman
,
A. H.
, and
Weiser
,
A.
,
1983
, “
Some Refinement Algorithms and Data Structures for Regular Local Mesh Refinement
,”
Sci. Comput. Appl. Math. Comput. Phys. Sci.
,
1
, pp.
3
17
.
39.
Shepherd
,
J. F.
,
Dewey
,
M. W.
,
Woodbury
,
A. C.
,
Benzley
,
S. E.
,
Staten
,
M. L.
, and
Owen
,
S. J.
,
2010
, “
Adaptive Mesh Coarsening for Quadrilateral and Hexahedral Meshes
,”
Finite Elem. Anal. Des.
,
46
(
1
), pp.
17
32
.10.1016/j.finel.2009.06.024
40.
Prasad
,
N. S.
, and
Narayanan
,
S.
,
1996
, “
Finite Element Analysis of Temperature Distribution During Arc Welding Using Adaptive Grid Technique
,”
Weld. J.
,
75
(
4
), pp.
123
128
.
41.
Runnemalm
,
H.
, and
Hyun
,
S.
,
2000
, “
Three-Dimensional Welding Analysis Using an Adaptive Mesh Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
2
), pp.
515
523
.10.1016/S0045-7825(99)00304-7
42.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2014
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti–6Al–4V
,”
Proc. Inst. Mech. Eng
.0954405414539494
43.
Yu
,
G.
,
Masubuchi
,
K.
,
Maekawa
,
T.
, and
Patrikalakis
,
N. M.
,
1999
, “
A Finite Element Model for Metal Forming by Laser Line Heating
,”
Proceedings of the First International Conference on Computer Applications in Shipbuilding, ICCAS
, Cambridge, MA, June, Vol. 99, pp.
409
418
.
44.
Zhang
,
L.
,
Reutzel
,
E.
, and
Michaleris
,
P.
,
2004
, “
Finite Element Modeling Discretization Requirements for the Laser Forming Process
,”
Int. J. Mech. Sci.
,
46
(
4
), pp.
623
637
.10.1016/j.ijmecsci.2004.04.001
45.
Boyer
,
R. F.
, and
Collings
,
E.
,
1994
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
46.
Hughes
,
T. J.
,
2000
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
Mineola, NY
.
47.
Lee
,
N. S.
, and
Bathe
,
K. J.
,
1994
, “
Error Indicators and Adaptive Remeshing in Large Deformation Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
16
(
2
), pp.
99
139
.10.1016/0168-874X(94)90044-2
48.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
You do not currently have access to this content.