Today, the use of material extrusion processes, like fused deposition modeling (FDM), in aerospace, biomedical science, and other industries, is gaining popularity because of the access to production-grade thermoplastic polymer materials. This paper focuses on how modifying process parameters such as build orientation, raster angle (RA), contour width (CW), raster width (RW), and raster-to-raster air gap (RRAG) can improve ultimate tensile strength (UTS), Young's modulus, and tensile strain. This was assessed using three methods: default, Insight revision, and visual feedback. On average, parameter modification through the visual feedback method improved UTS in all orientations, 16% in XYZ, 7% in XZY, and 22% in ZXY.

References

1.
ASTM,
2012
,
Standard Terminology for Additive Manufacturing Technologies
,
ASTM International
, West Conshohocken, PA.
2.
Stucker
,
B.
,
2012
, “
Additive Manufacturing Technologies: Technology Introduction and Business Implications
,” Frontiers of Engineering:
Reports on Leading-Edge Engineering From the 2011 Symposium
,
National Academies Press, Washington, DC
, Sept. 19–21, pp.
5
14
.
3.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
4.
Sun
,
Q.
,
Rizvi
,
G. M.
,
Bellehumeur
,
C. T.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyping J.
,
14
(
2
), pp.
72
80
.10.1108/13552540810862028
5.
Swanson
,
W. J.
,
Turley
,
P. W.
,
Leavitt
,
P. J.
,
Karwoski
,
P. J.
,
LaBossiere
,
E.
, and
Skubic
,
R. L.
,
2004
, “
High Temperature Modeling Apparatus
,” U.S. Patent No. US 6,722,872 B1.
6.
ASTM,
2011
, “
Standard Terminology for Additive Manufacturing-Coordinate Systems and Test Methodologies
,” ASTM International, West Conshohocken, PA.
7.
Perez
,
M.
,
Block
,
M.
,
Espalin
,
D.
,
Winker
,
R.
,
Hoppe
,
T.
,
Medina
,
F.
, and
Wicker
,
R.
,
2012
, “
Sterilization of FDM-Manufactured Parts
,”
Proceedings of the 2012 Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, Aug. 6–8, pp. 285–296.
8.
Zein
,
I.
,
Dietmar
,
W. H.
,
Tan
,
K. C.
, and
Teoh
,
S. H.
,
2002
, “
Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,”
Biomaterials
,
23
(
4
), pp.
1169
1185
.10.1016/S0142-9612(01)00232-0
9.
Espalin
,
D.
,
Arcaute
,
K.
,
Rodriguez
,
D.
,
Medina
,
F.
,
Posner
,
M.
, and
Wicker
,
R.
,
2010
, “
Fused Deposition Modeling of Patient-Specific Polymethylmethacrylate Implants
,”
Rapid Prototyping J.
,
16
(
3
), pp.
164
173
.10.1108/13552541011034825
10.
Mireles
,
J.
,
Kim
,
H. C.
,
Lee
,
I. H.
,
Espalin
,
D.
,
Medina
,
F.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2013
, “
Development of a Fused Deposition Modeling System for Low Melting Temperature Metal Alloys
,”
ASME J. Electron. Packag.
,
135
(
1
), p.
011008
.10.1115/1.4007160
11.
Kalita
,
S. J.
,
Bose
,
S.
,
Hosick
,
H. L.
, and
Bandyopadhyay
,
A.
,
2003
, “
Development of Controlled Porosity Polymer-Ceramic Composite Scaffolds via Fused Deposition Modeling
,”
Mater. Sci. Eng.
,
23
(
5
), pp.
611
620
.10.1016/S0928-4931(03)00052-3
12.
Masood
, and
S. H.
,
Song
,
W. Q.
,
2004
, “
Development of New Metal/Polymer Materials for Rapid Tooling Using Fused Deposition Modeling
,”
Mater. Des.
,
25
(
7
), pp.
587
594
.10.1016/j.matdes.2004.02.009
13.
Raut
,
S. V.
,
Jatti
,
V. K. S.
, and
Singh
,
T. P.
,
2014
, “
Mechanical Properties of Copper Filled Acrylonitrile Butadiene Styrene Composites
,”
Int. J. Appl. Eng. Res.
,
9
(
16
), pp.
3409
3416
.
14.
Nikzad
,
M.
,
Masood
,
S. H.
,
Sbarski
,
I.
, and
Groth
,
A.
,
2007
, “
Thermo-Mechanical Properties of a Metal-Filled Polymer Composite for Fused Deposition Modelling Applications
,”
Proceedings of the 5th Australasian Congress Applied Mechanics
,
Brisbane, Australia
, Dec. 10–12, pp. 319–324.
17.
Masood
,
S. H.
,
Mau
,
K.
, and
Song
,
W. Q.
,
2010
, “
Tensile Properties of Processed FDM Polycarbonate Material
,”
Mater. Sci. Forum
,
654–656
, pp.
2556
2559
.10.4028/www.scientific.net/MSF.654-656.2556
18.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.10.1108/13552540210441166
19.
Sood
,
A. K.
,
Ohdar
,
R. K.
, and
Mahapatra
,
S. S.
,
2010
, “
Parametric Appraisal of Mechanical Property of Fused Deposition Modeling Processed Parts
,”
Mater. Des.
,
31
(
1
), pp.
287
295
.10.1016/j.matdes.2009.06.016
20.
Bellini
,
A.
, and
Güçeri
,
S.
,
2003
, “
Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling
,”
Rapid Prototyping J.
,
9
(
4
), pp.
252
264
.10.1108/13552540310489631
21.
ASTM,
2010
,
Standard Test Method for Tensile Properties of Plastics
,
ASTM International
, West Conshohocken, PA.
22.
ASTM,
2008
,
Standard Practice for Conditioning Plastics for Testing
,
ASTM International
, West Conshohocken, PA.
23.
Bagsik
,
A.
, and
Schöppner
,
V.
,
2011
,
Mechanical Properties of Fused Deposition Modeling Parts Manufactured With ULTEM* 9085
, ANTEC 2011,
Boston, MA
, May 1–5.
24.
Perez
,
A. R. T.
,
Roberson
,
D. A.
, and
Wicker
,
R. B.
,
2014
, “
Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials
,”
J. Failure Anal. Prev.
,
14
(
3
), pp.
343
353
.10.1007/s11668-014-9803-9
25.
Nadooshan
,
A. A.
,
Daneshmand
,
S.
, and
Aghanajafi
,
C.
,
2007
, “
Application of RP Technology With Polycarbonate Material for Wind Tunnel Model Fabrication
,”
Int. J. Mech., Ind. Eng.
,
1
(
8
), pp. 416–421.
You do not currently have access to this content.