In metal additive manufacturing (AM) processes, parts are manufactured in layers by sintering or melting metal or metal alloy powder under the effect of a powerful laser or an electron beam. As the laser/electron beam scans the powder bed, it melts the powder in successive tracks which overlap each other. This overlap, called the hatch overlap, results in a continuous cycle of rapid melting and resolidification of the metal. The melting of the metal from powder to liquid and subsequent solidification causes anisotropic shrinkage in the layers. The thermal strains caused by the thermal gradients existing between the different layers and between the layers and the substrate leads to considerable thermal stresses in the part. As a result, stress gradients develop in the different directions of the part which lead to distortion and warpage in AM parts. The deformations due to shrinkage and thermal stresses have a significant effect on the dimensional inaccuracies of the final part. A three-dimensional thermomechanical finite element (FE) model has been developed in this paper which calculates the thermal deformation in AM parts based on slice thickness, part orientation, scanning speed, and material properties. The FE model has been validated and benchmarked with results already available in literature. The thermal deformation model is then superimposed with a geometric virtual manufacturing model of the AM process to calculate the form and runout errors in AM parts. Finally, the errors in the critical features of the AM parts calculated using the combined thermal deformation and geometric model are correlated with part orientation and slice thickness.

References

1.
Song
,
Y. A.
, and
Koenig
,
W.
,
1997
, “
Experimental Study of the Basic Process Mechanism for Direct Selective Laser Sintering of Low-Melting Metallic Powder
,”
Ann. CIRP - Manuf. Technol.;
46
(
1
), pp.
127
130
.10.1016/S0007-8506(07)60790-2
2.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1-3
), pp.
616
622
.10.1016/j.jmatprotec.2003.11.051
3.
Ning
,
Y.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
, and
Loh
,
H. T.
,
2006
, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
73
80
.10.1109/TASE.2005.857656
4.
Ning
,
Y.
,
Wong
,
Y. S.
, and
Fuh
,
J. Y. H.
,
2005
, “
Effect and Control of Hatch Length on Material Properties in the Direct Metal Laser Sintering Process
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
1
), pp.
15
25
.10.1243/095440505X7957
5.
Paul
,
R.
, and
Anand
,
S.
,
2013
Material Shrinkage Modeling and Form Error Prediction in Additive Manufacturing Processes
,”
Proceedings of the 41st NAMRC 2013
,
Madison, WI
.
6.
Wang
,
R.
,
Wang
,
L.
,
Zhao
,
L.
, and
Liu
Z.
,
2007
, “
Influence of Process Parameters on Part Shrinkage in SLS
,”
Int. J. Adv. Manuf. Technol.
,
33
(
5-6
), pp.
498
504
.10.1007/s00170-006-0490-x
7.
Wang
,
X. C.
,
Laoui
,
T.
,
Bonse
,
J.
,
Kruth
,
J. P.
,
Lauwers
,
B.
, and
Froyen
L.
,
2002
, “
Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation
,”
Int. J. Adv. Manuf. Technol.
,
19
(
5
), pp.
351
357
.10.1007/s001700200024
8.
Wang
,
X.
,
1999
, “
Calibration of Shrinkage and Beam Offset in SLS Process
,”
Rapid Prototyping J.
,
5
(
3
), pp.
129
133
.10.1108/13552549910278955
9.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
2001
, “
Successive Deposition of Metals in Solid Freeform Fabrication Processes, Part 1: Thermomechanical Models of Layers and Droplet Columns
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
623
631
.10.1115/1.1380199
10.
Klingbeil
,
N. W.
,
Beuth
,
J. L.
,
Chin
,
R. K.
, and
Amon
,
C. H.
,
2002
, “
Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication
,”
Int. J. Mech. Sci.
,
44
(
1
), pp.
57
77
.10.1016/S0020-7403(01)00084-4
11.
Roberts
,
I. A.
,
2012
, “
Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Ph.D. thesis
,
University of Wolverhampton
, Wolverhampton, UK.
12.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A
,
317
(
1-2
), pp.
59
64
.10.1016/S0921-5093(01)01179-0
13.
Zaeh
,
M. F.
,
Branner
,
G.
, and
Krol
,
T. A.
,
2010
, “
A Three Dimensional FE-Model for the Investigation of Transient Physical Effects in Selective Laser Melting
,”
4th International Conference on Advanced Research in Virtual and Rapid Prototyping
.
14.
Pohl
,
H.
,
Simchi
,
A.
,
Issa
,
M.
, and
Dias
,
H. C.
,
2001
, “
Thermal Stresses in Direct Metal Laser Sintering
,”
Proceedings of the 12th Solid Freeform Fabrication Symposium
,
Austin, TX
.
15.
Senthilkumaran
,
K.
,
Pandey
,
P. M.
, and
Rao
,
P. V. M.
,
2009
, “
New Model for Shrinkage Compensation in Selective Laser Sintering
,”
Virtual Phys. Prototyping
,
4
(
2
), pp.
49
–62.10.1080/17452750802393659
16.
Zhu
,
H. H.
,
Lu
,
L.
, and
Fuh
,
J. Y. H.
,
2006
, “
Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
2
), pp.
183
190
.10.1243/095440505X32995
17.
Jacobs
,
P.
,
2000
, “
The Effects of Random Noise Shrinkage on Rapid Tooling Accuracy
,”
Mater. Des.
,
21
(
2
), pp.
127
136
.10.1016/S0261-3069(99)00060-6
18.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.10.1016/j.jmsy.2011.07.010
19.
Simchi
,
A.
,
2006
, “
Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features
,”
Mater. Sci. Eng. A
,
428
(
1-2
), pp.
148
158
.10.1016/j.msea.2006.04.117
20.
Das
,
S.
,
Beaman
,
J. J.
,
Wohlert
,
M.
, and
Bourell
,
D. L.
,
1998
, “
Direct Laser Freeform Fabrication of High Performance Metal Components
,”
Rapid Prototyping J.
,
4
(
3
), pp.
112
117
.10.1108/13552549810222939
21.
Zhang
,
Y.
,
Faghri
,
A.
,
Buckley
,
C. W.
, and
Bergman
,
T. L.
,
2000
, “
Three-Dimensional Sintering of Two-Component Metal Powders with Stationary and Moving Laser Beams
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
150
158
.10.1115/1.521445
22.
Chen
,
T.
, and
Zhang
,
Y.
,
2007
, “
Three-Dimensional Modeling of Laser Sintering of a Two-Component Metal Powder Layer on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
575
582
.10.1115/1.2716714
23.
Jamshidinia
,
M.
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci.
,
135
(
6
), p.
061010
.10.1115/1.4025746
24.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
61
67
.10.1016/S0890-6955(01)00093-1
25.
Arni
,
R.
, and
Gupta
,
S. K.
,
2001
, “
Manufacturability Analysis of Flatness Tolerances in Solid Freeform Fabrication
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
148
156
.10.1115/1.1326439
26.
Masood
,
S. H.
, and
Rattanawong
,
W.
,
2002
, “
A Generic Part Orientation System Based on Volumetric Error in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
19
(
3
), pp.
209
216
.10.1007/s001700200015
27.
Rattanawong
,
W.
,
Masood
,
S. H.
, and
Iovenitti
,
P.
,
2001
, “
A Volumetric Approach to Part-Build Orientations in Rapid Prototyping
,”
J. Mater. Process. Technol.
,
119
(
1-3
), pp.
348
353
.10.1016/S0924-0136(01)00924-4
28.
Ollison
,
T.
, and
Berisso
,
K.
,
2010
, “
Three-Dimensional Printing Build Variables that Impact Cylindricity
,”
J. Ind. Technol.
,
26
(
1
), pp.
2
10
. Available at: http://www.atmae.org/jit/Articles/ollison010510.pdf
29.
Nagahanumaiah
,
S. K.
, and
Ravi
,
B.
,
2008
, “
Computer Aided Rapid Tooling Process Selection and Manufacturability Evaluation for Injection Mold Development
,”
Comput. Ind.
,
59
(
2-3
), pp.
262
276
.10.1016/j.compind.2007.06.021
30.
Lynn-Charney
,
C.
, and
Rosen
,
D. W.
,
2000
, “
Usage of Accuracy Models in Stereolithography Process Planning
,”
Rapid Prototyping J.
,
6
(
2
), pp.
77
86
.10.1108/13552540010323600
31.
ANSYS
,
2009
, “
Element Birth and Death
,”
Advanced Analysis Techniques Guide
.
32.
ANSYS
,
2013
, “
ansys 14.0 Mechanical APDL Software
.”
33.
Badrossamay
,
M.
, and
Childs
,
T. H. C.
,
2007
, “
Further Studies in Selective Laser Melting of Stainless and Tool Steel Powders
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
779
784
.10.1016/j.ijmachtools.2006.09.013
34.
Huebner
,
K. H.
,
Dewhirst
,
D. L.
,
Smith
,
D. E.
, and
Byrom
,
T. G.
,
2001
,
The Finite Element Method for Engineers
, 4th ed.,
John Wiley & Sons
,
New York
.
35.
ANSYS, 2009, “ansys 12.1 Theory Reference for the Mechanical APDL and Mechanical Applications,” from http://www.ansys.com
36.
Yang
,
Y.
,
Fuh
,
J. Y. H.
,
Loh
,
H. T.
, and
Wong
,
Y. S.
,
2003
, “
Multi-Orientational Deposition to Minimize Support in the Layered Manufacturing Process
,”
J. Manuf. Syst.
,
22
(
2
), pp.
116
129
.10.1016/S0278-6125(03)90009-4
37.
Allen
,
S.
, and
Dutta
,
D.
,
1995
, “
Determination and Evaluation of Support Structures in Layered Manufacturing
,”
J. Des. Manuf.
,
5
, pp.
153
162
.
38.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput. Aided Des.gn
,
30
(
5
), pp.
343
356
.10.1016/S0010-4485(97)00083-3
39.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2011
, “
Multi-Objective Optimization of Selective Laser Sintering Processes for Surface Quality and Energy Saving
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
B9
), pp. 1673–1682.10.1177/0954405411402925
40.
Paul
,
R.
, and
Anand
,
S.
,
2012
, “
Process Energy Analysis and Optimization in Selective Laser Sintering
,”
J. Manuf. Syst.
,
31
(
4
), pp.
429
437
.10.1016/j.jmsy.2012.07.004
41.
Thompson
,
D. C.
, and
Crawford
,
R. H.
,
1997
, “
Computational Quality Measures for Evaluation of Part Orientation in Freeform Fabrication
,”
J. Manuf. Syst.
,
16
(
4
), pp.
273
289
.10.1016/S0278-6125(97)89098-X
42.
ASME
,
1994
,
American National Standards Institute: Dimensioning and Tolerancing for Engineering Drawings
,
ANSI Standard Y14.5M
.
43.
Ramaswami
,
H.
,
Turek
,
S.
,
Rajmohan
,
S.
, and
Anand
,
S.
,
2011
, “
A Comprehensive Methodology for Runout Tolerance Evaluation Using Discrete Data
,”
Int. J. Adv. Manuf. Technol.
,
56
(
5-8
), pp.
663
676
.10.1007/s00170-011-3218-5
44.
Carr
,
K.
, and
Ferreira
,
P.
,
1995
, “
Verification of Form Tolerances Part II: Cylindricity and Straightness of a Median Line
,”
Precis. Eng.
,
17
(
2
), pp.
144
156
.10.1016/0141-6359(94)00018-U
45.
Boyer
,
R.
,
Welsch
,
G.
, and
Collings
,
E. W.
,
1994
,
Materials Properties Handbook—Titanium Alloys
,
ASM International
, Materials Park, OH.
46.
Mills
,
K.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
, Cambridge, UK.
47.
Navangul
,
G.
,
Paul
,
R.
, and
Anand
S.
,
2013
, “
Error Minimization in Layered Manufacturing Parts by Stereolithography File Modification Using a Vertex Translation Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031006
.10.1115/1.4024035
48.
Navangul
,
G.
,
2011
, “
Stereolithography (STL) File Modification by Vertex Translation Algorithm (VTA) for Precision Layered Manufacturing
,”
M.S. thesis
,
University of Cincinnati
, Cincinnati, OH.
49.
Jamieson
,
R.
, and
Hacker
,
H.
,
1995
, “
Direct Slicing of CAD Models for Rapid Prototyping
,”
Rapid Prototyping J.
,
1
(
2
), pp.
4
12
.10.1108/13552549510086826
50.
Santosh
,
A. R. S
,
Paul
,
R.
, and
Anand
,
S.
,
2013
, “
A New Additive Manufacturing File Format using Bezier Patches
,”
Proceedings of the 41st NAMRC 2013
,
Madison, WI
.
51.
Navangul
,
G.
,
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
A Vertex Translation Algorithm for Adaptive Modification of STL File in Layered Manufacturing
,”
Proceedings of 2011 ASME MSEC Conference
,
Corvallis, OR
.
You do not currently have access to this content.