Spot weld layout is critical to structural performance of vehicle and its design is also subject to manufacturing constraints. In this study, using thin-walled tube crash as an example, we establish the relation between structural performance and weld layout design with manufacturing constraints from resistance spot welding. First, a straight tube crash performance is evaluated as a function of flange width, weld distance to flange corner, and weld pitch, without consideration of manufacturing constraints. All these parameters exhibit certain influence on the deformation mode and the energy absorption capacity. Then, an S-shaped tube is studied in the design optimization of weld layout by adding manufacturing constraints. The proposed approach can determine optimized results by simultaneously considering crash performance and manufacturing constraints. It is also concluded that weld layout has more significant influence on crash performance in straight tubes than in S-shaped tubes.

References

1.
Kurtaran
,
H.
,
Eskandarian
,
A.
,
Marzougui
,
D.
, and
Bedewi
,
N. E.
,
2002
, “
Crashworthiness Design Optimization Using Successive Response Surface Approximations
,”
Comput. Mech.
,
29
, pp.
409
421
.10.1007/s00466-002-0351-x
2.
Avalle
,
M.
,
Chiandussi
,
G.
, and
Belingardi
,
G.
,
2002
, “
Design Optimization by Response Surface Methodology: Application to Crashworthiness Design of Vehicle Structures
,”
Struct. Multidiscip. Optim.
,
24
, pp.
325
332
.10.1007/s00158-002-0243-x
3.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2003
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
25
, pp.
1
12
.10.1007/s00158-002-0266-3
4.
Gu
,
L.
,
Yang
,
R. J.
,
Li
,
G.
, and
Tyan
,
T.
,
2004
, “
Vehicle Structure Optimization for Crash Pulse
,”
DETC2004/DAC-57479, Proceedings of ASME 2004 Design Engineering Technical Conferences
, Salt Lake City, UT, Sept. 28–Oct. 2.
5.
Hamza
,
K.
, and
Saitou
,
K.
,
2005
, “
Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations
,”
ASME J. Mech. Des.
,
127
, pp.
485
492
.10.1115/1.1862680
6.
Yang
,
R. J.
,
Rui
,
Y.
,
Mohammed
,
A.
, and
Singh
,
G.
,
1996
, “
Spot Weld/Adhesive Pattern Optimization
,”
Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference
, Irvine, CA.
7.
Zhang
,
Y.
, and
Taylor
,
D.
,
2001
, “
Optimization of Spot-welded Structures
,”
Finite Elem. Anal. Design
,
37
, pp.
1013
1022
.10.1016/S0168-874X(01)00046-4
8.
Xiang
,
Y.
,
Wang
,
Q.
,
Fan
,
Z.
, and
Fang
,
H.
,
2006
, “
Optimal Crashworthiness Design of a Spot-Welded Thin-Walled Hat Section
,”
Finite Elem. Anal. Design
,
42
, pp.
846
855
.10.1016/j.finel.2006.01.001
9.
White
,
M. D.
, and
Jones
,
N.
,
1999
, “
Experimental Quasi-Static Axial Crushing of Top-Hat and Double-Hat Thin-Walled Sections
,”
Int. J. Mech. Sci.
,
41
, pp.
179
208
.10.1016/S0020-7403(98)00047-2
10.
White
,
M. D.
,
Jones
,
N.
, and
Abramowicz
,
W.
,
1999
, “
A Theoretical Analysis for the Quasi-Static Axial Crushing of Top-Hat and Double-Hat Thin-Walled Sections
,”
Int. J. Mech. Sci.
,
41
, pp.
209
233
.10.1016/S0020-7403(98)00048-4
11.
White
,
M. D.
, and
Jones
,
N.
,
1999
, “
A Theoretical Analysis for the Dynamic Axial Crushing of Top-Hat Thin Walled Sections
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
213
, pp.
307
325
.10.1243/0954407991526883
12.
Schneider
,
F.
, and
Jones
,
N.
,
2003
, “
Influence of Spot-Weld Failure on Crushing of Thin-Walled Structural Sections
,”
Int. J. Mech. Sci.
,
45
, pp.
2061
2081
.10.1016/j.ijmecsci.2003.11.004
13.
Schneider
,
F.
, and
Jones
,
N.
,
2008
, “
Observations on the Design and Modelling of Some Joined Thin-Walled Structural Sections
,”
Thin-Walled Struct.
,
46
, pp.
887
897
.10.1016/j.tws.2008.01.014
14.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
J. Appl. Mech.
,
50
, pp.
727
734
.10.1115/1.3167137
15.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1988
, “
Manual of Crashworthiness Engineering, Stability of Progressive Collapse
,” Center for Transportation Studies, Massachusetts Institute of Technology, Cambridge, MA, Vol.
8
.
16.
Cai
,
W.
,
Tilove
R.
, and
Shastry
,
G.
,
2011
, “
Method of Optimizing Weld Design for Concurrent Consideration of Performance and Manufacturing Requirements
,” U.S. Patent No. 8,032,343.
17.
Gupta
,
A.
,
Shastry
,
G.
,
Hunsur
,
N. K.
,
Cai
,
W.
, and
Tilove
,
R.
,
2012
, “
An Approach for Automated and Optimized Selection of Weldguns for Spot Welding in Automotive Body Shop
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
034501
.10.1115/1.4005795
18.
Wu
,
X.
,
Xia
,
Y.
,
Zhou
,
Q.
,
Cai
,
W.
, and
Tilove
,
R.
,
2010
, “
Spot Weld Layout Optimization With Manufacturing Constraints for Vehicle Structural Performance
,”
Proceedings of the ASME International Mechanical Engineering Congress & Exposition
, Vancouver, British Columbia, Canada, Nov. 12–18, Paper Number IMECE2010-40376.
19.
LS-OPT
User's Manual
, Version 4.0, 2009, Livermore Software Technology Corporation.
20.
NHTSA Finite Element Model Archive
,
2006
,
Dodge Neon, Detailed model (272,485 elements)
, http://www.ncac.gwu.edu/vml/models.html
You do not currently have access to this content.