The present finite volume method based fluid flow solutions investigate the boundary-layer flow and heat transfer characteristics of polymer melt flow in a rectangular plane channel in the presence of the effect of viscous dissipation and heat transfer by considering the viscosity and density variations in the flow. For different inflow velocity boundary conditions and the injection polymer melt temperatures, the viscous dissipation effects on the velocity and temperature distributions are studied extensively to analyze the degree of interactions of thermal flow field dominated by the viscous heating and momentum diffusion mechanism with varying boundary conditions. The modified forms of Cross constitutive equation and Tait equation of state are adopted for the representation of viscosity variations and density change, respectively, in the polymer melt flow. These models together with the viscous dissipation terms are successfully incorporated into the finite volume method based fluid flow solutions to realistically represent the heat effects in the plane channel. The numerical results presented for two different commercial polymer melt flows, namely, polymer Polyacetal POM-M90-44 and polypropylene (PP), demonstrate that proposed mathematical formulations for viscosity and density variations including viscous heating terms into the energy equations, which are fully coupled with momentum equations, lead to more accurate representation of the fluid flow and heat transfer phenomena for the polymer melt flows in plane channels.

References

1.
Costa
,
A.
, and
Macedonio
,
G.
,
2003
, “
Viscous Heating in Fluids With Temperature-Dependent Viscosity: Implication for Magma Flows
,”
Nonlinear Processes Geophys.
,
10
, pp.
545
555
.10.5194/npg-10-545-2003
2.
Yankov
,
V. I.
,
Trufanova
,
N. M.
, and
Shcherbinin
,
A. G.
,
2004
, “
Nonisothermal Flow of Polymer Solutions and Melts in Channels of Constant Cross Section
,”
Theor. Found. Chem. Eng.
,
38
(
2
), pp.
179
188
.10.1023/B:TFCE.0000022488.61794.5f
3.
Mahmoud
,
M. A.
, and
Megahed
,
A. M.
,
2009
, “
Effects of Viscous Dissipation and Heat Generation (Absorption) in a Thermal Boundary Layer of a Non-Newtonian Fluid Over a Continuously Permeable Flat Plate
,”
J. Appl. Mech. Tech. Phys.
,
50
(
5
), pp.
819
835
.10.1007/s10808-009-0111-1
4.
Sheela-Francis
ca,
J.
, and
Tso
,
C. P.
,
2009
, “
Viscous Dissipation Effects on Parallel Plates With Constant Heat Flux Boundary Conditions
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
249
254
.10.1016/j.icheatmasstransfer.2008.11.003
5.
Hooman
,
K.
, and
Ejlali
,
A.
,
2010
, “
Effects of Viscous Heating, Fluid Property Variation, Velocity Slip, and Temperature Jump on Convection Through Parallel and Circular Micro-channels
,”
Commun. Numer. Meth. Eng.
,
37
, pp.
34
38
.10.1016/j.icheatmasstransfer.2009.09.011
6.
Vaz
,
M.
, Jr.
, and
Zdanski
,
P. S. B.
,
2007
, “
A Fully Implicit Finite Difference Scheme for Velocity and Temperature Coupled Solutions of Polymer Melt Flow
,”
Commun. Numer. Meth. Eng.
,
23
, pp.
285
294
.10.1002/cnm.902
7.
Hassan
,
H.
,
Regnier
,
N.
,
Puyos
,
C.
, and
Defaye
,
G.
,
2008
, “
The Effect of Viscous Dissipation on the Polymer Temperature During Injection Molding
,”
Proceedings of the 5th European Thermal Sciences Conference
,
The Netherlands
.
8.
Hassan
,
H.
,
Regnier
,
N.
,
Pujos
,
C.
, and
Defaye
,
G.
,
2008
, “
Effect of Viscous Dissipation on the Temperature of the Polymer During Injection Molding Filling
,”
Polym. Eng. Sci.
,
48
(
6
), pp.
1199
1206
.10.1002/pen.21077
9.
Zdanski
,
P. S. B.
, and
Vaz
,
M.
, Jr.
,
2009
, “
Three-Dimensional Polymer Melt Flow in Sudden Expansions: Non-Isothermal Flow Topology
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3585
3594
.10.1016/j.ijheatmasstransfer.2009.03.004
10.
Kopecz
,
S.
,
Krebs
,
M.
,
Meister
,
A.
, and
Wünsch
,
O.
,
2010
, “
A Fast Numerical Approach for the Simulation of Highly Viscous Non-Isothermal Non-Newtonian Fluids
,”
Maths. Phys.
,
61
, pp.
673
684
.10.1007/s00033-010-0067-2
11.
Yalcin
,
B.
,
Valladeres
,
D.
, and
Cakmak
,
M.
,
2003
, “
Amplification Effect of Platelet Type Nanoparticles on the Orientation Behavior of Injection Molded Nylon 6 Composites
,”
Polymer
,
44
, pp.
6913
6925
.10.1016/j.polymer.2003.07.010
12.
Yalcin
,
B.
, and
Cakmak
,
B.
,
2004
, “
Superstructural Hierarchy Developed in Coupled High Shear/High Thermal Gradient Conditions of Injection Molding in Nylon 6 Nanocomposites
,”
Polymer
,
45
, pp.
2691
2710
.10.1016/j.polymer.2004.01.031
13.
Yu
,
T.
,
Bei
,
H.
,
Yan
,
Z.
,
Xu
,
B.
,
Xu
,
H.
, and
Wu
,
Y.
,
2010
, “
Experimental Study on Viscous Damping of Polymer Melt in Micro-Channels
,”
Adv. Mater. Res.
,
97-101
, pp.
2527
2532
.10.4028/www.scientific.net/AMR.97-101.2527
14.
Xu
,
B.
,
Wang
,
M.
,
Yu
,
T.
, and
Zhao
,
D.
,
2010
, “
Viscous Dissipation Influencing Viscosity of Polymer Melt in Micro Channels
,”
J. Mech. Sci. Technol.
,
24
(
7
), pp.
1417
1423
.10.1007/s12206-010-0420-6
15.
Chiang
,
H. H.
,
Hieber
,
C. A.
, and
Wang
,
K. K.
,
1991
, “
A Unified Simulation of the Filling and Postfilling Stages in Injection Molding. Part I: Formulation
,”
Polym. Eng. Sci.
,
31
(
2
), pp.
116
124
.10.1002/pen.760310210
16.
Han
,
K. H.
, and
Im
,
Y. T.
,
1997
, “
Compressible Flow Analysis of Filling and Postfilling in Injection Molding With Phase-Change Effect
,”
Compos. Struct.
,
38
(
1–4
), pp.
179
190
.10.1016/S0263-8223(97)00054-8
17.
Verhoyen
,
O.
, and
Dupret
,
F.
,
1998
, “
A Simplified Method for Introducing the Cross Viscosity Law in the Numerical Simulation of Hele Shaw Flow
,”
J. Non-Newtonian Fluid Mech.
,
74
(
1-3
), pp.
25
46
.10.1016/S0377-0257(97)00061-X
18.
Holm
,
E. J.
, and
Langtangen
,
H. P.
,
1999
, “
A Unified Finite Element Model for the Injection Molding Process
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3-4
), pp.
413
429
.10.1016/S0045-7825(99)00029-8
19.
Hieber
,
C. A.
, and
Shen
,
S. F.
,
1980
, “
A Finite Element/Finite Difference Simulation of Injection-Molding Filling Process
,”
J. Non-Newtonian Fluid Mech.
,
7
, pp.
1
32
.10.1016/0377-0257(80)85012-9
20.
Chang
,
R. Y.
, and
Yang
,
W. H.
,
2001
, “
Numerical Simulation of Mold Filling in Injection Molding Using a 3-D Finite Volume Approach
,”
Int. J. Numer. Methods Fluids
,
37
, pp.
125
148
.10.1002/fld.166
21.
Chang
,
R. Y.
,
Yang
,
W. H.
,
Hwang
,
S. J.
, and
Su
,
F.
,
2004
, “
Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process
,”
IEEE Trans. Compon. Packag. Technol.
,
27
, pp.
200
209
. 10.1109/TCAPT.2003.821682
22.
Tutar
,
M.
, and
Karakus
,
A.
,
2009
, “
3-D Computational Modeling of Process Condition Effects on Polymer Injection Molding
,”
Int. Polym. Process.
,
24
(
5
), pp.
384
398
.10.3139/217.2249
23.
Tutar
,
M.
, and
Karakus
,
A.
,
2009
, “
Injection Molding Simulation of a Compressible Polymer
,”
J. Polym. Eng.
,
29
(
6
), pp.
355
383
.10.1515/POLYENG.2009.29.6.355
24.
Cross
,
M. M.
,
1979
, “
Relation Between Viscoelasticity and Shear-Thinning Behavior in Liquids Rheologica
,”
ACTA
,
18
, pp.
609
614
.
25.
Tait
,
P. G.
,
1988
, “
Physics and Chemistry of the Voyage H.M.S Challenger
,” 2, Scientific Papers LXI.
26.
Tutar
,
M.
, and
Karakus
,
A.
,
2010
, “
Computational Study of the Effect of Governing Parameters on a Polymer Injection Molding Process for Single-Cavity and Multicavity Mold Systems
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011001
.10.1115/1.4000620
27.
Hieber
,
C. A.
, and
Chiang
,
H. H.
,
1992
, “
Shear-Rate Dependence Modeling of Polymer Melt Viscosity
,”
Polym. Eng. Sci.
,
32
(
14
), pp.
931
938
.10.1002/pen.760321404
28.
Moldflow
,
1995
,
Material Testing Overview
,
Moldflow Corporation
,
Wayland, MA
.
29.
Ansys Inc.
,
2010
, “Ansys Fluent Version 13.0.0 (R13) Theory and User's Guide.”
You do not currently have access to this content.