The hybrid use of dissimilar lightweight materials, such as aluminum alloy and advanced high strength steel (AHSS), has become a critical approach to reduce the weight of ground transportation vehicles. Self-piercing riveting (SPR) as a preferred cold-forming fastening method is facing problems like weak interlocking and insufficient penetration, due to the reduced formability of AHSS. In this paper, a new process named electroplastic self-piercing riveting (EP-SPR) was proposed to reduce the deformation resistance of AHSS DP780, by applying a direct current (dc) to it during the riveting process. The influence of dc on force and displacement characteristics throughout the riveting process, joint physical attributes and quasi-static performances for two sheet combinations, e.g., AA6061-T6 to DP780 (combination 1) and DP780 to AA6061-T6 (combination 2), were studied and compared with the traditional SPR joints. The results showed that compared with the traditional SPR joints, the EP-SPR ones increased by 12.5% and 23.3% in tensile-shear strength and cross-tension strengths for combination 1, respectively. For combination 2, even though the EP-SPR joints decreased by 5.8% in tensile-shear strength, it could reduce the penetration risk of bottom AA6061-T6, and present a better energy absorption capability for the increased undercut amount. In addition, the corresponding cross-tension strength of EP-SPR joints still increases by 6.1%.

References

1.
Qiu
,
R. F.
,
Iwamoto
,
C.
, and
Satonaka
,
S.
,
2009
, “
Interfacial Microstructure and Strength of Steel/Aluminum Alloy Joints Welded by Resistance Spot Welding With Cover Plate
,”
J. Mater. Process. Technol.
,
209
, pp.
4186
4193
.10.1016/j.jmatprotec.2008.11.003
2.
Qiu
,
R. F.
,
Shi
,
H. X.
,
Zhang
,
K. K.
,
Tu
,
Y.
,
Iwamoto
,
C.
, and
Satonaka
,
S.
,
2010
, “
Interfacial Characterization of Joint Between Mild Steel and Aluminum Alloy Welded by Resistance Spot Welding
,”
Mater. Charact.
,
61
, pp.
684
688
.10.1016/j.matchar.2010.03.015
3.
Qiu
,
R. F.
,
Satonaka
,
S.
, and
Iwamoto
,
C.
,
2009
, “
Effect of Interfacial Reaction Layer Continuity on the Tensile Strength of Resistance Spot Welded Joints Between Aluminum Alloy and Steels
,”
Mater. Des.
,
30
, pp.
3686
3689
.10.1016/j.matdes.2009.02.012
4.
Yasuyama
,
M.
,
Fukui
,
K.
,
Ogawa
,
K.
, and
Taka
,
T.
,
1996
, “
Spot Welding of Aluminum and Steel Sheet With Insert of Aluminum Clad Steel Sheet
,”
Sumitomo Met.
,
48
, pp.
87
95
.
5.
Sun
,
X.
,
Stephens
,
E. V.
,
Khaleel
,
M. A.
,
Shao
,
H.
, and
Kimchi
,
M.
,
2004
, “
Resistance Spot Welding of Aluminum Alloy to Steel With Transition Material—From Process to Performance. Part I: Experimental Study
,”
Weld. J.
,
83
, pp.
188
195
.
6.
Feng
,
Z.
,
Santella
,
M. L.
,
David
,
S. A.
,
Steel
,
R. J.
,
Packer
,
S. M.
,
Pan
,
T.
,
Kuo
,
M.
, and
Bhatnagar
,
R. S.
, “
Friction Stir Spot Welding of Advanced High-Strength Steels—A Feasibility Study
,”
SAE
, Paper No. 2005-01-1248. 10.4271/2005-01-1248
7.
Huang
,
T.
,
Sato
,
Y. S.
,
Kokawa
,
H.
,
Miles
,
M. P.
,
Kohkonen
,
K.
,
Siemssen
,
B.
,
Steel
,
R. J.
, and
Packer
,
S.
,
2009
, “
Microstructural Evolution of DP980 Steel During Friction Bit Joining
,”
Metall. Mater. Trans. A
,
40
, pp.
2994
3000
.10.1007/s11661-009-0016-x
8.
Miles
,
M. P.
,
Kohkonen
,
K.
,
Packer
,
S.
,
Steel
,
R. J.
,
Siemssen
,
B.
, and
Sato
,
Y. S.
,
2009
, “
Solid State Spot Joining of Sheet Materials Using Consumable Bit
,”
Sci. Technol. Weld. Join.
,
14
, pp.
72
77
.10.1179/136217108X341193
9.
Miles
,
M. P.
,
Feng
,
Z.
,
Kohkonen
,
K.
,
Weickum
,
B.
,
Steel
,
R. J.
, and
Lev
,
L.
,
2010
, “
Spot Joining of AA 5754 and High Strength Steel Sheets by Consumable Bit
,”
Sci. Technol. Weld. Join.
,
15
, pp.
325
330
.10.1179/136217110X12707333260491
10.
Barnes
,
T.
, and
Pashby
,
I.
,
2000
, “
Joining Techniques for Aluminum Spaceframes Used in Automobiles: Part II—Adhesive Bonding and Mechanical Fasteners
,”
J. Mater. Process. Technol.
,
99
, pp.
72
79
.10.1016/S0924-0136(99)00361-1
11.
Wang
,
B.
,
Hao
,
C. Y.
,
Zhang
,
J. S.
, and
Zhang
,
H. Y.
,
2006
, “
A New Self-Piercing Riveting Process and Strength Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
128
(2)
, pp.
580
587
.10.1115/1.2137746
12.
Savic
,
V.
, and
Hector
,
L. G.
, Jr.
,
2007
, “
Tensile Deformation and Fracture of Press Hardened Boron Steel Using Digital Image Correlation
,”
SAE
, Paper No. 2007-01-0790.10.4271/2007-01-0790
13.
Zavattieri
,
P.
,
Savic
,
V.
,
Hector
,
L. G.
,
Fekete
,
J. R.
,
Tong
,
W.
, and
Xuan
,
Y.
,
2009
, “
Spatio-Temporal Characteristics of the Portevin-Le Châtelier Effect in Austenitic Steel With Twinning Induced Plasticity
,”
Int. J. Plasticity
,
25
, pp.
2298
2330
.10.1016/j.ijplas.2009.02.008
14.
Savic
,
V.
,
Hector
,
L. G.
, Jr.
, and
Fekete
,
J.
,
2010
, “
A Digital Image Correlation Study of Plastic Deformation and Fracture in Fully Martensitic Steels
,”
Exp. Mech.
,
50
, pp.
99
110
.10.1007/s11340-008-9185-6
15.
Sun
,
X.
, and
Khaleel
,
M. A.
,
2005
, “
Strength Estimation of Self-Piercing Rivets Using Lower Bound Limit Load Analysis
,”
Sci. Technol. Weld. Join.
,
10
, pp.
624
625
.10.1179/174329305X57491
16.
Mori
,
K.
,
Kato
,
T.
,
Abe
,
Y.
, and
Ravshanbek
,
Y.
,
2006
, “
Plastic Joining of Ultra High Strength Steel and Aluminum Alloy Sheets by Self Piercing Rivet
,”
CIRP Ann.
,
55
(
1
), pp.
283
286
.10.1016/S0007-8506(07)60417-X
17.
Eckstein
,
J.
,
Roos
,
E.
,
Roll
,
K.
, Ruther, M., and Seidenfuß, M.,
2007
, “
Experimental and Numerical Investigations to Extend the Process Limits in Self-Pierce Riveting
,”
10th ESAFORM Conference on Material Forming
,
AIP Conf. Proc.
, Vol. 907, pp.
279
286
10.1063/1.2729525.
18.
Woodward
,
C.
,
Trinkle
,
D. R.
,
Hector
,
L. G.
, Jr.
, and
Olmsted
,
D. L.
,
2008
, “
Prediction of Dislocation Cores in Aluminum From Density Functional Theory
,”
Phys. Rev. Lett.
,
100
, p.
045507
.10.1103/PhysRevLett.100.045507
19.
Troitskii
,
O. A.
, and
Likhtman
,
V. I.
,
1963
, “
The Anisotropy of the Action of Electron and Radiation on the Deformation of Zinc Single Crystal in the Brittle State
,”
Kokl. Akad. Nauk.
,
148
, pp.
332
334
.
20.
Troitskii
,
O. A.
, and
Pis'ma
,
V.
,
1969
, “
Zhurnal Eksperimental ‘noi, Teoretiheskoi Fiziki, Zhurnal Eksperimental‘noi Teoreticheskoi Fiziki
,”
Akademi'i‘a Nauk
,
10
, pp.
18
22
.
21.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng., A
,
287
, pp.
276
287
.10.1016/S0921-5093(00)00786-3
22.
Conrad
,
H.
,
2002
, “
Thermally Activated Plastic Flow of Metals and Ceramics With an Electric Field or Current
,”
Mater. Sci. Eng., A
,
322
, pp.
100
107
.10.1016/S0921-5093(01)01122-4
23.
Tang
,
G. Y.
,
Zhang
,
J.
,
Zheng
,
M. X.
,
Zhang
,
J.
,
Fang
,
W.
, and
Li
,
Q.
,
2000
, “
Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L
,”
Mater. Sci. Eng., A
,
281
, pp.
263
267
.10.1016/S0921-5093(99)00708-X
24.
Zhang
,
J.
,
Tang
,
G. Y.
,
Yan
,
Y. J.
, and
Fang
,
W.
,
2002
, “
Effect of Current Pulses on the Drawing Stress and Properties of Cr17Ni6Mn3 and 4J42 Alloys in the Cold-Drawing Process
,”
J. Mater. Process. Technol.
,
120
, pp.
13
16
.10.1016/S0924-0136(01)01019-6
25.
Tang
,
G. Y.
,
Zhang
,
J.
,
Yan
,
Y. J.
,
Zhou
,
H. H.
, and
Fang
,
W.
,
2003
, “
The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire
,”
J. Mater. Process. Technol.
,
137
, pp.
96
99
.10.1016/S0924-0136(02)01091-9
26.
Xu
,
Z. H.
,
Tang
,
G. Y.
,
Tian
,
S. Q.
,
Ding
,
F.
, and
Tian
,
H. Y.
,
2007
, “
Research of Electroplastic Rolling of AZ31 Mg Alloy Strip
,”
J. Mater. Process. Technol.
,
182
, pp.
128
133
.10.1016/j.jmatprotec.2006.07.019
27.
Stolyarov
,
V. V.
,
2009
, “
Deformability and Nanostructuring of TiNi Shape-Memory Alloys During Electroplastic Rolling
,”
Mater. Sci. Eng., A
,
503
, pp.
18
20
.10.1016/j.msea.2008.01.094
28.
Stolyarov
,
V. V.
,
2010
, “
Features of Deformation Behavior at Rolling and Tension Under Current in TiNi Alloy
,”
Rev. Adv. Mater. Sci.
,
25
, pp.
194
202
.
29.
Sung
,
J. H.
,
Kim
,
J. H.
, and
Wagoner
,
R. H.
,
2010
, “
A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature
,”
Int. J. Plasticity
,
26
, pp.
1746
1771
.10.1016/j.ijplas.2010.02.005
30.
He
,
X. C.
,
Pearson
,
I.
, and
Young
,
K.
,
2008
, “
Self-Piercing Riveting for Sheet Materials: State of the Art
,”
J. Mater. Process. Technol.
,
199
, pp.
27
36
.10.1016/j.jmatprotec.2007.10.071
31.
Cai
,
W.
,
Wang
,
P. C.
, and
Yang
,
W.
,
2005
, “
Assembly Dimensional Prediction for Self-Piercing Riveted Aluminum Panel
,”
Int. J. Mach. Tool Manuf.
,
45
, pp.
695
704
.10.1016/j.ijmachtools.2004.09.023
32.
Abe
,
Y.
,
Kato
,
T.
, and
Mori
,
K.
,
2006
, “
Joinability of Aluminum Alloy and Mild Steel Sheets by Self-Piercing Rivet
,”
J. Mater. Process. Technol.
,
177
, pp.
417
421
.10.1016/j.jmatprotec.2006.04.029
You do not currently have access to this content.