This study is focused on experimental evaluation and numerical modeling of micromilling of hardened H13 tool steels. Multiple tool wear tests are performed in a microside cutting condition with 100 μm diameter endmills. The machined surface integrity, part dimension control, size effect, and tool wear progression in micromachining of hardened tool steels are experimentally investigated. A strain gradient plasticity model is developed for micromachining of hardened H13 tool steel. Novel 2D finite element (FE) models are developed in software ABAQUS to simulate the continuous chip formation with varying chip thickness in complete micromilling cycles under two configurations: microslotting and microside cutting. The steady-state cutting temperature is investigated by a heat transfer analysis of multi micromilling cycles. The FE model with the material strain gradient plasticity is validated by comparing the model predictions of the specific cutting forces with the measured data. The FE model results are discussed in chip formation, stress, temperature, and velocity fields to great details. It is shown that the developed FE model is capable of modeling a continuous chip formation in a complete micromilling cycle, including the size effect. It is also shown that the built-up edge in micromachining can be predicted with the FE model.

References

1.
Shelton
,
J. A.
, and
Shin
,
Y. C.
, 2010, “
Comparative Evaluation of Laser-Assisted Micro-Milling for AISI 316, AISI 422, Ti-6Al-4V and Inconel 718 in a Side-Cutting Configuration
,”
J. Micromech. Microeng.
,
20
, p.
075012
.
2.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
, 2009, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precis. Eng.
,
33
(
4
), pp.
402
407
.
3.
Aramcharoen
,
A.
,
Mativenga
,
P. T.
,
Yang
,
S.
,
Cooke
,
K. E.
, and
Teer
,
D. G.
, 2008, “
Evaluation and Selection of Hard Coatings for Micro Milling of Hardened Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
14
), pp.
1578
1584
.
4.
Melkote
,
S.
,
Kumar
,
M.
,
Hashimoto
,
F.
, and
Lahoti
,
G.
, 2009, “
Laser Assisted Micro-Milling of Hard-to-Machine Materials
,”
CIRP Ann. - Manuf. Technol.
,
58
, pp.
45
48
.
5.
Shelton
,
J. A.
, and
Shin
,
Y. C.
, 2010, “
Experimental Evaluation of Laser-Assisted Micromilling in a Slotting Configuration
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
0210081
.
6.
Jeon
,
Y.
, 2008, “
Laser-Assisted Micro End Milling
,” Ph.D. thesis, The University of Wisconsin–Madison, Madison, WI.
7.
Liu
,
K.
, and
Melkote
,
S. N.
, 2007, “
Finite Element Analysis of the Influence of Tool Edge Radius on Size Effect in Orthogonal Micro-Cutting Process
,”
Int. J. Mech. Sci.
,
49
(
5
), pp.
650
660
.
8.
Lai
,
X.
,
Li
,
H.
,
Li
,
C.
,
Lin
,
Z.
, and
Ni
,
J.
, 2008, “
Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.
9.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
, pp.
474
481
.
10.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
, 2004, “
The Mechanics of Machining at the Microscale: Assessment of the Ccurrent State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
666
678
.
11.
Liu
,
X.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
, 2007, “
Model-Based Analysis of the Surface Generation in Microendmilling—Part II: Experimental Validation and Analysis
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
461
469
.
12.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
, 2006, “
Surface Defects During Microcutting
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1378
1387
.
13.
Lee
,
K.
, and
Dornfeld
,
D. A.
, 2005, “
Micro-Burr Formation and Minimization Through Process Control
,”
Precis. Eng.
,
29
(
2
), pp.
246
252
.
14.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
, 2006, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
.
15.
Filiz
,
S.
,
Conley
,
C. M.
,
Wasserman
,
M. B.
, and
Ozdoganlar
,
O. B.
, 2007, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Yicro-endmills
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1088
1100
.
16.
Özel
,
T.
, 2007, “
Modelling and Simulation of Micro-Milling Process
,”
4th International Conference and Exhibition on Design and Production of Machines and Dies/Molds
, pp.
21
23
, Cesme, Turkey.
17.
Liu
,
K.
, and
Melkote
,
S. N.
, 2006, “
Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting
,”
ASME J. Manuf. Sci. Eng.
,
128
, pp.
730
738
.
18.
Liang
,
S.
and
Dornfeld
,
D.
, 1981, “
Tool Wear Detection Using Time Series Analysis of Acoustic Emission
”,
ASME J. Eng. Ind.
,
111
, pp.
199
205
.
19.
Yan
,
H.
,
Hua
,
J.
, and
Shivpuri
,
R.
, 2007, “
Flow Stress of AISI H13 Die Steel in Hard Machining
,”
Mater. Des.
,
28
(
1
), pp.
272
277
.
20.
Lampman
,
S. R.
, and
Zorc
,
T. B.
, 1990, “
Properties and Selection: Irons, Steels, and High-performance Alloys
,”
Metals Handbook
, Vol.
1
, 10th ed.,
ASM International
Materials Park, OH
.
21.
Ng
,
E.-G.
, and
Aspinwall
,
D. K.
, 2002, “
Modelling of Hard Part Machining
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
222
229
.
22.
Park
,
S.
, 2007, “
Development of a Microstructure-Level Finite Element Model for the Prediction of Tool Failure by Chipping in Tungsten Carbide-Cobalt Systems
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
You do not currently have access to this content.