In this research, a simulated annealing algorithm was used to minimize the spring-back in V-die bending process. First, an adaptive neuro-fuzzy inference system (ANFIS) model was developed using the data generated based on experimental observations. The output parameter of the ANFIS model is spring-back and the input parameters are sheet thickness, sheet orientation, and punch tip radius. The performance of the ANFIS model in training and testing sets is compared with those observations. The results indicated that the ANFIS model can be applied successfully for prediction of spring-back. Then, the ANFIS model was used as a function in simulated annealing algorithm to minimize the spring-back. The results showed that the proposed model has an acceptable performance to optimize the bending process.

References

1.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
, 2001,
Manufacturing Engineering and Technology,
Prentice-Hall
,
New Jersey
, Chap. 16.
2.
Schuler
,
GmbH
, 1998,
Metal Forming Handbook
Springer-Verlag
,
Berlin
, Chap. 4.
3.
Lange
,
K.
, 1985,
Handbook of Metal Forming
McGraw-Hill
,
New York
, Chap. 1.
4.
Ragai
,
I.
,
Lazim
,
D.
, and
Nemes
,
J. A.
, 2005, “
Anisotropy and Springback in Draw-Bending of Stainless Steel 410: Experimental and Numerical Study
,”
J. Mater. Process. Technol.
,
166
, pp.
116
127
.
5.
Tekiner
,
Z.
, 2004, “
An Experimental Study of the Examination of Springback of Sheet Metals With Several Thicknesses and Properties in Bending Dies
,”
J. Mater. Process. Technol.
,
145
, pp.
109
117
.
6.
Moon
,
Y. H.
,
Kang
,
S. S.
,
Cho
,
J. R.
, and
Kim
,
T. G.
, 2003, “
Effect of Tool Temperature on the Reduction of the Springback of Aluminium Sheets
,”
J. Mater. Process. Technol.
,
132
, pp.
365
368
.
7.
Li
,
X.
,
Yang
,
Y.
,
Wang
,
Y.
,
Bao
,
J.
, and
Li
,
S.
, 2002, “
Effect of the Material-Hardening Mode on the Springback Simulation Accuracy of V-Free Bending
,”
J. Mater. Process. Technol.
,
123
, pp.
209
211
.
8.
Cho
,
J. R.
,
Moon
,
S. J.
,
Moon
,
Y. H.
, and
Kang
,
S. S.
, 2003, “
Finite Element Investigation on Springback Characteristics in Sheet Metal U-Die Bending Process
,”
J. Mater. Process. Technol.
,
141
, pp.
109
116
.
9.
Gomes
,
C.
,
Onipede
,
O.
, and
Lovell
,
M.
, 2005, “
Investigation of Springback in High Strength Anisotropic Steels
,”
J. Mater. Process. Technol.
,
159
, pp.
91
98
.
10.
Bozdemir
,
M.
, and
Gulcu
,
M.
, 2008, “
Artificial Neural Network Analysis of Springback in V Bending
,”
J. Appl. Sci.
,
8
(
17
), pp.
3038
3043
.
11.
Liu
,
W.
,
Liu
,
Q.
,
Ruan
,
F.
,
Liang
,
Z.
, and
Qiu
,
H.
, 2007, “
Springback Prediction for Sheet Metal Forming Based on GA–ANN Technology
,”
J. Mater. Process. Technol.
,
187
, pp.
227
231
.
12.
Ruffini
,
R.
, and
Cao
,
J.
, 1998, “
Using Neural Network for Springback Minimization in a Channel Forming Process
,”
Developments in Sheet Metal Stamping
, SAE Paper No. 1322, pp.
77
85
.
13.
Pathak
,
K. K.
,
Panthi
,
S.
, and
Ramakrishnan
,
N.
, 2005, “
Application of Neural Network in Sheet Metal Bending Process
,”
Def. Sci. J.
,
55
, pp.
125
131
.
14.
Forcellese
,
A.
, and
Gabriella
,
F.
, 2001, “
Artificial Neural-Network-Based Control System for Springback Compensation in Press-Brake Forming
,”
Int. J. Mater. Prod. Technol.
,
16
, pp.
545
563
.
15.
Inamdar
,
M.
,
Narasimhan
,
K.
,
Maiti
,
S. K.
, and
Singh
,
U. P.
, 2000, “
Development of an Artificial Neural Network to Predict Spring-back in Air Vee Bending
,”
Int. J. Adv. Manuf. Technol.
,
16
, pp.
376
381
.
16.
Viswanathan
,
V.
,
Kinsey
,
B.
, and
Cao
,
J.
, 2003, “
Experimental Implementation of Neural Network Spring-back Control for Sheet Metal Forming
,”
J. Eng. Mater. Technol.
,
125
, pp.
141
147
.
17.
Cao
,
J.
,
Kinsey
,
B.
, and
Solla
,
S. A.
, 2000, “
Consistent and Minimal Springback Using a Stepped Binder Force Trajectory and Neural Network Control
,”
J. Eng. Mater. Technol.
,
122
, pp.
113
118
.
18.
Kazan
,
R.
,
Fırat
,
M.
, and
Tiryaki
,
A. E.
, 2009, “
Prediction of Spring-Back in Wipe-Bending Process of Sheet Metal Using Neural Network
,”
Mater. Des.
,
30
, pp.
418
423
.
19.
Rahmani
,
B.
,
Alinejad
,
G.
,
Bakhshi-Jooybari
,
M.
, and
Gorji
,
A.
, 2010, “
An Investigation on Spring-Back/Negative Spring-Back Phenomena Using Finite Element Method and Experimental Approach
,”
Proc. Inst. Mech. Eng., Part B
,
223
, pp.
841
850
.
20.
Thipprakmas
,
S.
, and
Rojananan
,
S.
, 2008, “
Investigation of Negative Spring-Go Phenomenon Using Finite Element Method
,”
Mater. Des.
,
29
, pp.
1526
1532
.
21.
ASTM
, 1965,
Die Design Handbook,
McGraw-Hill Book Company
,
New York
.
22.
Marciniak
,
Z.
,
Duncan
,
J. L.
, and
Hu
,
S. J.
, 2002,
Mechanics of Sheet Metal Forming,
Butterworth-Heinemann
,
Oxford
.
23.
Jang
,
J. S. R.
, 1993, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
,
23
, pp.
665
685
.
24.
Nielsen
,
R. H.
, 1987, “
Counter Propagation Networks
,”
Appl. Opt.
,
26
, pp.
4979
4985
.
25.
Suman
,
B.
, 2004, “
Study of SA Based Algorithm for Multi-Objective Optimization of a Constrained Problem
,”
Comput. Chem. Eng.
,
28
, pp.
1849
1871
.
26.
Metropolis
,
N.
,
Rosenbluth
,
A.
,
Rosenbluth
,
M.
,
Teller
,
A.
, and
Teller
,
E.
, 1953, “
Equations of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
, pp.
1087
1094
.
27.
Yang
,
S. H.
,
Srinivas
,
J.
,
Mohana
,
S.
,
Lee
,
D. M.
, and
Balaji
,
S.
, 2009, “
Optimization of Electric Discharge Machining Using Simulated Annealing
,”
J. Mater. Process. Technol.
,
209
, pp.
4471
4475
.
28.
Hagan
,
M. T.
,
Demuth
,
H. B.
, and
Beale
,
M.
, 1996,
Neural Network Design
,
PWS Publishing Company
,
Boston
.
29.
The Math Works Inc. Product, 2005, Neural Network Toolbox Version 4.0.1 matlab 7.0.1 release 14 service pack 3, The Math Works Inc.
You do not currently have access to this content.