The bottleneck in laser hardening principally occurs when large surfaces have to be treated because this process situation leads to multitrack laser scanning in order to treat all the component surfaces. Unfortunately, multitrack laser trajectories generate an unwanted tempering effect that depends on the overlapping of two close trajectories. To reduce the softening effects, a simulator capable to optimize the process parameters, such as laser power and speed and number and types of trajectories, could sensibly increase the applicability of the process. In this paper, an original model for the tempering is presented. By introducing a tempering time factor for the martensitic transformation, the hardness reduction can be predicted according to any laser process parameters, material, and geometry. Experimental comparisons will be presented to prove the accuracy of the model.

1.
Tani
,
G.
,
Orazi
,
L.
,
Fortunato
,
A.
, and
Cuccolini
,
G.
, 2008, “
Laser Ablation of Metals: A 3D Process Simulation for Industrial Applications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
031111
.
2.
Peng
,
R. L.
, and
Ericsson
,
T.
, 1998, “
Effect of Laser Hardening on Bending Fatigue of Several Steels
,”
Scand. J. Metall.
0371-0459,
27
(
4
), pp.
180
190
.
3.
Pantelis
,
D. I.
,
Bouyiouri
,
E.
,
Kouloumbi
,
N.
,
Vassiliou
,
P.
, and
Koutscomichalis
,
A.
, 2002, “
Wear and Corrosion Resistance of Laser Surface Hardened Structural Steel
,”
Surf. Coat. Technol.
0257-8972,
161
, pp.
125
134
.
4.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1984, “
The Transformation Hardening of Steel Surfaces by Laser Beam—I. Hypoeutectoid Steels
,”
Acta Metall.
0001-6160,
32
(
11
), pp.
1935
1937
.
5.
Tani
,
G.
,
Orazi
,
L.
,
Fortunato
,
A.
,
Campana
,
G.
, and
Cuccolini
,
G.
, 2007, “
Laser Hardening Process Simulation for Mechanical Parts
,”
Proceedings of the LASE 2007
, San Jose, CA.
6.
Ohmura
,
E.
, and
Inoue
,
K.
, 1989, “
Computer Simulation on Structural Changes of Hypoeutectoid Steel in Laser Transformation Hardening Process
,”
JSME Int. J.
0913-185X,
32
, pp.
45
53
.
7.
Skvarenina
,
S.
, and
Shin
,
Y. C.
, 2006, “
Predictive Modeling and Experimental Results for Laser Hardening of AISI 1536 Steel With Complex Geometric Features by a High Power Diode Laser
,”
Surf. Coat. Technol.
0257-8972,
46
, pp.
3949
3962
.
8.
Jacot
,
A.
, and
Rappaz
,
M.
, 1997, “
A Two-Dimensional Diffusion Model for the Prediction of Phase Transformation: Application to Austenization and Homogenization of Hypoeutectoid Fe-C Steels
,”
Acta Mater.
1359-6454,
45
(
2
), pp.
575
585
.
9.
Jacot
,
A.
, and
Rappaz
,
M.
, 1998, “
Modeling of Reaustenization From the Perlite Structure in Steel
,”
Acta Mater.
1359-6454,
46
(
11
), pp.
3949
3962
.
10.
Jacot
,
A.
, and
Rappaz
,
M.
, 1999, “
A Combined Model for the Description of Austenization, Homogenization and Grain Growth in Hypoeutectoid Fe-C Steel During Heating
,”
Acta Mater.
1359-6454,
47
(
5
), pp.
1645
1651
.
11.
Committee
,
A. I. H.
, 1991,
ASM Handbook
,
American Society of Metals
,
New York
, Vol.
4
.
12.
Hollomon
,
J.
, and
Jaffe
,
L.
, 1945, “
Time–Temperature Relations in Tempering Steel
,”
Trans. AIME
0096-4778,
162
, pp.
223
249
.
13.
Starink
,
M.
, 1996, “
A New Method for the Derivation of Activation Energies From Experiments Performed at Constant Heating Rate
,”
Thermochim. Acta
0040-6031,
288
, pp.
97
104
.
14.
Waterschoot
,
T.
,
Verbeken
,
K.
, and
de Cooman
,
B. C.
, 2006, “
Tempering Kinetics of the Martensitic Phase in DP Steel
,”
ISIJ Int.
0915-1559,
46
(
1
), pp.
138
146
.
15.
Mittemeijer
,
E. J.
,
Van Gent
,
A.
, and
Van Der Schaaf
,
P. J.
, 1986, “
Analysis of Transformation Kinetics by Nonisothermal Dilatometry
,”
Metall. Mater. Trans. A
1073-5623,
17
, pp.
1441
1445
.
16.
Zhang
,
Z.
,
Delagnes
,
D.
, and
Bernhart
,
G.
, 2004, “
Microstructure Evolution of Hot-Work Tool Steels During Tempering and Definition of a Kinetic Law Based on Hardness Measurements
,”
Mater. Sci. Eng., A
0921-5093,
380
, pp.
222
230
.
17.
Wang
,
Y.
,
Denis
,
B.
,
Appolaire
,
B.
, and
Archambault
,
P.
, 2004, “
Modelling of Precipitation of Carbides During Tempering
,”
J. Phys. IV
1155-4339,
120
, pp.
103
110
.
18.
Lakhkar
,
R. S.
,
Shin
,
Y. C.
, and
Krane
,
M. J. M.
, 2008, “
Predictive Modeling of Multi-Track Laser Hardening of AISI 4140 Steel
,”
Mater. Sci. Eng., A
0921-5093,
480
, pp.
209
217
.
19.
Johnson
,
W.
, and
Mehl
,
R.
, 1939, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
135
, pp.
416
458
.
20.
Avrami
,
M.
, 1939, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
0021-9606,
7
, pp.
1103
1112
.
21.
Orazi
,
L.
,
Fortunato
,
A.
,
Tani
,
G.
,
Campana
,
G.
,
Ascari
,
A.
, and
Cuccolini
,
G.
, 2008, “
A New Computationally Efficient Method in Laser Hardening
,”
Proceedings of the MSEC 2008 International Conference on Manufacturing Science and Engineering
,
ASME
,
New York
.
22.
Brooks
,
C. R.
, 1996,
Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
,
ASM International
,
Materials Park, OH
.
23.
Orazi
,
L.
,
Fortunato
,
A.
,
Cuccolini
,
G.
, and
Tani
,
G.
, 2010, “
An Efficient Model for Laser Surface Hardening of Hypoeutectoid Steels
,”
Appl. Surf. Sci.
0169-4332,
256
(
6
), pp.
1913
1919
.
24.
Tani
,
G.
,
Orazi
,
L.
,
Fortunato
,
A.
, and
Cuccolini
,
G.
, 2006, “
3-D Modelling of Laser Ablation of Metals in Mould Manufacturing
,”
Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition
.
25.
Tannehill
,
J. C.
,
Anderson
,
A. D.
, and
Pletcher
,
R. H.
, 1997,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
London
.
26.
Patwa
,
R.
, and
Shin
,
Y. C.
, 2006, “
Predictive Modeling of Laser Hardening of AISI5150H Steels
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
3949
3962
.
27.
Tani
,
G.
,
Orazi
,
L.
,
Fortunato
,
A.
,
Campana
,
G.
,
Ascari
,
A.
, and
Cuccolini
,
G.
, 2008, “
Optimization Strategies of Laser Hardening of Hypo-Eutectoid Steel
,”
Proceedings of the 41st CIRP Conference on Manufacturing Systems
.
You do not currently have access to this content.