Severe plastic deformation processes have a great deal of importance because of the improvement in mechanical properties of the processed parts as a consequence of the grain size reduction in the material due to the accumulation of deformation. One of the main severe plastic deformation (SPD) processes is called the equal channel angular extrusion (ECAE). Although a large amount of studies, which deal with experimental analysis of processed parts exist, few studies dealing with the force required to perform the process have been developed. In this study, an analytical modeling of the force required to perform the ECAE process has been developed using the upper bound method (UBM). The analytical equations developed take into account the material strain hardening and the ECAE dies with circular cross-section. Moreover, the experimental tests have been performed and the extrusion force has been measured. The UBM and experimental results have been compared showing a great deal of agreement.

1.
Segal
,
V. M.
,
Reznikov
,
V. I.
,
Drobyshevskiy
,
A. E.
, and
Kopylov
,
V. I.
, 1981, “
Plastic Working of Metals by Simple Shear
,”
Russ. Metall.
0036-0295,
1
, pp.
99
105
.
2.
Valiev
,
R. Z.
, 1997, “
Structure and Mechanical Properties of Ultrafine-Grained Metals
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
59
66
.
3.
Iwahashi
,
Y.
,
Wang
,
J.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1996, “
Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials
,”
Scr. Mater.
1359-6462,
35
, pp.
143
146
.
4.
Kaibyshev
,
O. A.
, 1992,
Superplasticity in Metals, Intermetallics and Ceramics
,
Springer
,
New York
.
5.
Nieh
,
T. G.
,
Wadsworth
,
J.
, and
Sherby
,
O. D.
, 1997,
Superplasticity in Metals and Ceramics
,
Cambridge University Press
,
UK
.
6.
Iwahashi
,
Y.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1998, “
The Process of Grain Refinement in Equal-Channel Angular Pressing
,”
Acta Mater.
1359-6454,
46
, pp.
3317
3331
.
7.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
, 2000, “
Bulk Nanostructured Materials From Severe Plastic Deformation
,”
Prog. Mater. Sci.
0079-6425,
45
, pp.
103
189
.
8.
González
,
P. A.
,
Luis-Pérez
,
C.
,
Garcés
,
Y.
, and
Gil-Sevillano
,
J.
, 2001, “
ECAE, una tecnología de procesado emergente para producir propiedades relevantes en materiales metálicos
,”
Rev. Metal.
,
37
, pp.
673
692
.
9.
Máthis
,
K.
,
Gubicza
,
J.
, and
Nam
,
N. H.
, 2005, “
Microstructure and Mechanical Behavior of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing
,”
J. Alloys Compd.
0925-8388,
394
(
1–2
), pp.
194
199
.
10.
Agnew
,
S. R.
,
Mehrotra
,
P.
,
Lillo
,
T. M.
,
Stoica
,
G. M.
, and
Liaw
,
P. K.
, 2005, “
Crystallographic Texture Evolution of Three Wrought Magnesium Alloys During Equal Channel Angular Extrusion
,”
Mater. Sci. Eng., A
0921-5093,
408
(
1–2
), pp.
72
78
.
11.
Segal
,
V. M.
, 1999, “
Equal Channel Angular Extrusion: From Macromechanics to Structure Formation
,”
Mater. Sci. Eng., A
0921-5093,
271
, pp.
322
333
.
12.
Lee
,
D. N.
, 2000, “
An Upper-Bound Solution of Channel Angular Deformation
,”
Scr. Mater.
1359-6462,
43
, pp.
115
118
.
13.
Khan
,
Z. A.
,
Chakkingal
,
U.
, and
Venugopal
,
P.
, 2003, “
Analysis of Forming Loads, Microstructure Development and Mechanical Property Evolution During Equal Channel Angular Extrusion of a Commercial Grade Aluminium Alloy
,”
J. Mater. Process. Technol.
0924-0136,
135
, pp.
59
67
.
14.
Alkorta
,
J.
, and
Sevillano
,
J. G.
, 2003, “
A Comparison of FEM and Upper-Bound Type Analysis Of Equal-Channel Angular Pressing (ECAP)
,”
J. Mater. Process. Technol.
0924-0136,
141
, pp.
313
318
.
15.
Li
,
S.
,
Bourke
,
M. A. M.
,
Beyerlein
,
I. J.
,
Alexander
,
D. J.
, and
Clausen
,
B.
, 2004, “
Finite Element Analysis of the Plastic Deformation Zone and Working Load in Equal Channel Angular Extrusion
,”
Mater. Sci. Eng., A
0921-5093,
382
, pp.
217
236
.
16.
Luis Pérez
,
C. J.
, 2004, “
Upper Bound Analysis and FEM Simulation of Equal Fillet Radii Angular Pressing
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
205
214
(b).
17.
Altan
,
B. S.
,
Purcek
,
G.
, and
Miskioglu
,
I.
, 2005, “
An Upper-Bound Analysis for Equal-Channel Angular Extrusion
,”
J. Mater. Process. Technol.
0924-0136,
168
, pp.
137
146
.
18.
Eivani
,
A. R.
, and
Taheri
,
A. K.
, 2007, “
An Upper Bound Solution of ECAE Process With Outer Curved Corner
,”
J. Mater. Process. Technol.
0924-0136,
182
, pp.
555
563
.
19.
Hosford
,
W. F.
, and
Caddell
,
R. M.
, 2007,
Metal Forming: Mechanics and Metallurgy
,
Cambridge University Press
,
USA
.
20.
Luri
,
R.
,
Luis
,
C. J.
,
Leon
,
J.
, and
Sebastián
,
M. A.
, 2006, “
A New Configuration for Equal Channel Angular Extrusion Dies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
860
865
.
21.
Luis Pérez
,
C. J.
, and
Luri
,
R.
, 2008, “
Study of the ECAE Process by the Upper Bound Method Considering the Correct Die Design
,”
Mech. Mater.
0167-6636,
40
(
8
), pp.
617
628
.
22.
Luri
,
R.
, and
Luis Pérez
,
C. J.
, 2008, “
Upper Bound Analysis of the ECAE Process by Considering Strain Hardening Materials and Three Dimensional Rectangular Dies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
5
), p.
051006
.
23.
Avitzur
,
B.
, 1979,
Metal Forming: Processes and Analysis
,
McGraw-Hill
,
New York
.
24.
Avitzur
,
B.
, 1983,
Handbook of Metal-Forming Processes
,
Wiley
,
New York
.
25.
Luri
,
R.
,
León
,
J.
,
Luis
,
C. J.
, and
Puertas
,
I.
, 2004, “
Mechanical Behaviour of an Al-Mg Alloy Processed by ECAE
,”
Proceedings of the 21st International Manufacturing Conference (IMC 21)
, Ireland, pp.
167
174
.
You do not currently have access to this content.