The recent application of inkjet printing to fabrication of three-dimensional, multilayer and multimaterial parts has tested the limits of conventional printing-based additive manufacturing techniques. The novel method presented here, termed as additive manufacturing via microarray deposition (AMMD), expands the allowable range of physical properties of printed fluids to include important, high-viscosity production materials (e.g., polyurethane resins). AMMD relies on a piezoelectrically driven ultrasonic print-head that generates continuous streams of droplets from 45μm orifices while operating in the 0.5–3.0 MHz frequency range. The device is composed of a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the material to be printed, and a silicon micromachined array of liquid horn structures, which make up the ejection nozzles. Unique to this new printing technique are the high frequency of operation, use of fluid cavity resonances to assist ejection, and acoustic wave focusing to generate the pressure gradient required to form and eject droplets. We present the initial characterization of a micromachined print-head for deposition of fluids that cannot be used with conventional printing-based rapid prototyping techniques. Glycerol-water mixtures with a range of properties (surface tensions of 5873mN/m and viscosities of 0.7380mNs/m2) were used as representative printing fluids for most investigations. Sustained ejection was observed in all cases. In addition, successful ejection of a urethane-based photopolymer resin (surface tension of 2530mN/m and viscosity of 9003000mNs/m2) was achieved in short duration bursts. Peaks in the ejection quality were found to correspond to predicted device resonances. Based on these results, we have demonstrated the printing of fluids that fall well outside of the accepted range for the previously introduced printing indicator. The micromachined ultrasonic print-head achieves sustained printing of fluids up to 380mNs/m2, far above the typical printable range.

1.
Calvert
,
P.
, 2001, “
Inkjet Printing for Materials and Devices
,”
Chem. Mater.
0897-4756,
13
(
10
), pp.
3299
3305
.
2.
de Gans
,
B. -J.
,
Duineveld
,
P. C.
, and
Schubert
,
U. S.
, 2004, “
Inkjet Printing of Polymers: State of the Art and Future Developments
,”
Adv. Mater.
0935-9648,
16
(
3
), pp.
203
213
.
3.
Sirringhaus
,
H.
,
Kawase
,
T.
,
Friend
,
R. H.
,
Shimoda
,
T.
,
Inbasekaran
,
M.
,
Wu
,
W.
, and
Woo
,
E. P.
, 2000, “
High-Resolution Inkjet Printing of All-Polymer Transistor Circuits
,”
Science
0036-8075,
290
(
5499
), pp.
2123
2126
.
4.
Le
,
H. P.
, 1998, “
Progress and Trends in Ink-Jet Printing Technology
,”
J. Imaging Sci. Technol.
1062-3701,
42
(
1
), pp.
49
62
.
5.
Jakob
,
K.
,
Damon
,
B.
,
Neagu
,
A.
,
Kachurin
,
A.
, and
Forgacs
,
G.
, 2006, “
Three-Dimensional Tissue Constructs Built by Bioprinting
,”
Biorheology
0006-355X,
43
(
3–4
), pp.
509
513
.
6.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
, 2005, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
1355-2546,
11
(
1
), pp.
9
17
.
7.
Wang
,
X.
,
Yan
,
Y.
, and
Zhang
,
R.
, 2007, “
Rapid Prototyping as a Tool for Manufacturing Bioartificial Livers
,”
Trends Biotechnol.
0167-7799,
25
(
11
), pp.
505
513
.
8.
Jakob
,
K.
,
Neagu
,
A.
,
Mironov
,
V.
, and
Forgacs
,
G.
, 2004, “
Organ Printing: Fiction or Science
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
371
375
.
9.
Mironov
,
V.
,
Boland
,
T.
,
Trusk
,
T.
,
Forgacs
,
G.
, and
Markwald
,
R. R.
, 2003, “
Organ Printing: Computer-Aided Jet-Based 3D Tissue Engineering
,”
Trends Biotechnol.
0167-7799,
21
(
4
), pp.
157
161
.
10.
Mironov
,
V.
,
Prestwich
,
G.
, and
Forgacs
,
G.
, 2007, “
Bioprinting Living Structures
,”
J. Mater. Chem.
0959-9428,
17
(
20
), pp.
2054
2060
.
11.
Lee
,
M.
,
Dunn
,
J. C. Y.
, and
Wu
,
B. M.
, 2005, “
Scaffold Fabrication by Indirect Three-Dimensional Printing
,”
Biomaterials
0142-9612,
26
(
20
), pp.
4281
4289
.
12.
Cui
,
T.
,
Liu
,
Y.
,
Chen
,
B.
,
Zhu
,
M.
, and
Varahramyan
,
K.
, 2005, “
Printed Polymeric Passive RC Filters and Degradation Characteristics
,”
Solid-State Electron.
0038-1101,
49
(
5
), pp.
853
859
.
13.
Kobayashi
,
H.
,
Kanbe
,
S.
,
Seki
,
S.
,
Kigchi
,
H.
,
Kimura
,
M.
,
Yudasaka
,
I.
,
Miyashita
,
S.
,
Shimoda
,
T.
,
Towns
,
C. R.
,
Burroughes
,
J. H.
, and
Friend
,
R. H.
, 2000, “
A Novel RGB Multicolor Light-Emitting Polymer Display
,”
Synth. Met.
0379-6779,
111-112
, pp.
125
128
.
14.
Plötner
,
M.
,
Wegener
,
T.
,
Richter
,
S.
,
Howitz
,
S.
, and
Fischer
,
W. -J.
, 2004, “
Investigation of Ink-Jet Printing of Poly-3-Octylthiophene for Organic Field-Effect Transistors From Different Solutions
,”
Synth. Met.
0379-6779,
147
, pp.
299
303
.
15.
Coakley
,
K. M.
, and
Mcgehee
,
M. D.
, 2004, “
Conjugated Polymer Photovoltaic Cells
,”
Chem. Mater.
0897-4756,
16
(
23
), pp.
4533
4542
.
16.
Sele
,
C. W.
,
Von Werne
,
T.
,
Friend
,
R. H.
, and
Sirringhaus
,
H.
, 2005, “
Lithography-Free, Self-Aligned Inkjet Printing With Sub-Hundred-Nanometer Resolution
,”
Adv. Mater.
0935-9648,
17
(
8
), pp.
997
1001
.
17.
Macdiarmid
,
A. G.
, 2001, “
Synthetic Metals: A Novel Role for Organic Polymers
,”
Synth. Met.
0379-6779,
125
, pp.
11
22
.
18.
Ainsley
,
C.
,
Reis
,
N.
, and
Derby
,
B.
, 2002, “
Freeform Fabrication by Controlled Droplet Deposition of Powder Filled Melts
,”
J. Mater. Sci.
0022-2461,
37
(
15
), pp.
3155
3161
.
19.
Borland
,
S.
, and
Baker
,
G.
, 2001, “
Method for the Construction of an Aperture Plate for Dispensing Liquid Droplets
,” Assignee Aerogen, Inc., USPTO, International Patent US 6,235,177 B1.
20.
Schuster
,
J.
,
Rubsamen
,
R.
,
Lloyd
,
P.
, and
Lloyd
,
J.
, 1997, “
The AERX Aerosol Delivery System
,”
Pharm. Res.
0724-8741,
14
(
3
), pp.
354
357
.
21.
De heij
,
B.
,
Van der schoot
,
B.
,
Bo
,
H.
,
Hess
,
J.
, and
De rooij
,
N. F.
, 2000, “
Characterization of a fL Droplet Generator for Inhalation Drug Therapy
,”
Sens. Actuators, A
0924-4247,
85
(
1–3
), pp.
430
434
.
22.
Yuan
,
S.
,
Zhou
,
Z.
, and
Wang
,
G.
, 2003, “
Experimental Research on Piezoelectric Array Microjet
,”
Sens. Actuators, A
0924-4247,
108
(
1–3
), pp.
182
186
.
23.
Yuan
,
S.
,
Zhou
,
Z.
,
Wang
,
G.
, and
Liu
,
C.
, 2003, “
MEMS-Based Piezoelectric Array Microjet
,”
Microelectron. Eng.
0167-9317,
66
(
1–4
), pp.
767
772
.
24.
Perçin
,
G.
, and
Khuri-Yakub
,
B. T.
, 2002, “
Piezoelectrically Actuated Flextensional Micromachined Ultrasound Droplet Ejectors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
49
(
6
), pp.
756
766
.
25.
Meacham
,
J. M.
,
Ejimofor
,
C.
,
Kumar
,
S.
,
Degertekin
,
F. L.
, and
Fedorov
,
A. G.
, 2004, “
Micromachined Ultrasonic Droplet Generator Based on a Liquid Horn Structure
,”
Rev. Sci. Instrum.
0034-6748,
75
(
5
), pp.
1347
1352
.
26.
Meacham
,
J. M.
,
Varady
,
M. J.
,
Degertekin
,
F. L.
, and
Fedorov
,
A. G.
, 2005, “
Droplet Formation and Ejection From a Micromachined Ultrasonic Droplet Generator: Visualization and Scaling
,”
Phys. Fluids
1070-6631,
17
(
10
), pp.
100605
.
27.
Lide
,
D. R.
, 2005,
CRC Handbook of Chemistry and Physics
,
Taylor & Francis
,
New York
.
28.
Miner
,
C. S.
, and
Dalton
,
N. N.
, 1953,
Glycerol
,
Reinhold Publishing Corp.
,
New York
.
29.
Bhagavantam
,
S.
, and
Joga Rao
,
C. V.
, 1939, “
Ultrasonic Velocity and the Adiabatic Compressibility of Some Liquids
,”
Proc. Indian Acad. Sci., Sect. A
0370-0089,
9
(
4
), pp.
312
315
.
30.
Freyer
,
E. B.
,
Hubbard
,
J. C.
, and
Andrews
,
D. H.
, 1929, “
Sonic Studies of the Physical Properties of Liquids. I. The Sonic Interferometer. The Velocity of Sound in Some Organic Liquids and Their Compressibilities
,”
J. Am. Chem. Soc.
0002-7863,
51
(
3
), pp.
759
770
.
31.
Cheng
,
N. -S.
, 2008, “
Formula for the Viscosity of Glycerol-Water Mixture
,”
Ind. Eng. Chem. Res.
0888-5885,
47
(
9
), pp.
3285
3288
.
32.
Segur
,
J. B.
, and
Oberstar
,
H. E.
, 1951, “
Viscosity of Glycerol and Its Aqueous Solutions
,”
Ind. Eng. Chem.
0019-7866,
43
(
9
), pp.
2117
2120
.
33.
Washburn
,
E. W.
,
West
,
C. J.
, and
Dorsey
,
N. E.
, 2003,
International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, Vol. 5
, 1st Electronic Edition, Knovel, Norwich, NY. Original publication by National Research Council 1926–1930.
34.
Chenlo
,
F.
,
Moreira
,
R.
,
Pareira
,
G.
, and
Bello
,
B.
, 2004, “
Kinematic Viscosity and Water Activity of Aqueous Solutions of Glycerol and Sodium Chloride
,”
Eur. Food Res. Technol.
1438-2377,
219
(
4
), pp.
403
408
.
35.
Shankar
,
P. N.
, and
Kumar
,
M.
, 1994, “
Experimental Determination of the Kinematic Viscosity of Glycerol Water Mixtures
,”
Proc. R. Soc. London, Ser. A
0950-1207,
444
(
1922
), pp.
573
581
.
36.
Harkins
,
W. D.
, and
Brown
,
F. E.
, 1919, “
The Determination of Surface Tension (Free Surface Energy), and the Weight of Falling Drops: The Surface Tension of Water and Benzene by the Capillary Height Method
,”
J. Am. Chem. Soc.
0002-7863,
41
(
4
), pp.
499
524
.
37.
Lando
,
J. L.
, and
Oakley
,
H. T.
, 1967, “
Tabulated Correction Factors for the Drop-Weight-Volume Determination of Surface and Interfacial Tensions
,”
J. Colloid Interface Sci.
0021-9797,
25
(
4
), pp.
526
530
.
38.
2003, ANSYS.
39.
Meacham
,
J. M.
,
Varady
,
M. J.
,
Esposito
,
D.
,
Degertekin
,
F. L.
, and
Fedorov
,
A. G.
, 2008, “
Micromachined Ultrasonic Atomizer for Liquid Fuels
,”
Atomization Sprays
1044-5110,
18
(
2
), pp.
163
190
.
40.
Jackson
,
R. G.
, 2004,
Novel Sensors and Sensing, Series in Sensors
,
CRC
,
Boca Raton, FL
.
41.
Seerden
,
K. A. M.
,
Reis
,
N.
,
Evans
,
R. G.
,
Grant
,
P. S.
,
Halloran
,
J. W.
, and
Derby
,
B.
, 2001, “
Ink-Jet Printing of Wax-Based Alumina Suspensions
,”
J. Am. Ceram. Soc.
0002-7820,
84
(
11
), pp.
2514
2520
.
You do not currently have access to this content.