In the present study a more complete numerical solution approach using parallel computing technology is provided for the three-dimensional modeling of mold insert polymer injection molding process by considering the effects of phase-change and compressibility for non-Newtonian fluid flow conditions. A volume of fluid (VOF) method coupled with a finite volume approach is used to simulate the mold-filling stage of the injection molding process. The variations in viscosity and density in the polymer melt flow are successfully resolved in the present VOF method to more accurately represent the rheological behavior of the polymer melt flow during the mold filling. A comprehensive high-resolution differencing scheme (compressive interface capturing scheme for arbitrary meshes or CICSAM) is successfully utilized to capture moving interfaces and the pressure-implicit with splitting operators pressure-velocity coupling algorithm is employed to enable a higher degree of approximate relation between corrections for pressure and velocity. The capabilities of the proposed numerical methodology in modeling real molding flow conditions are verified through quantitative and qualitative comparisons with other simulation programs and the data obtained from the experimental study conducted. The present numerical results are also compared with each other for a polypropylene female threaded adaptor pipe fitting model with a metallic insert for varying governing process conditions/parameters to assess the modeling constraints and enhancements of the present numerical procedure and the effects of these conditions to optimize the polymer melt flow for mold insert polymer injection molding process. The numerical results suggest that the present numerical solution approach can be used with a confidence for further studies of optimization of design of mold insert polymer injection molding processes.

1.
Chang
,
R. Y.
, and
Yang
,
W. H.
, 2001, “
Numerical Simulation of Mold Filling in Injection Molding Using a 3-D Finite Volume Approach
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
(
2
), pp.
125
148
.
2.
Gao
,
D. M.
,
Nguyen
,
K. T.
,
Hetu
,
J. H.
,
Laroche
,
D.
, and
Garcia-Rejon
,
A.
, 1998, “
Modeling of Industrial Polymer Process: Injection Molding and Blow Molding
,”
Adv. Perform. Mater.
,
5
(
1-2
), pp.
43
64
.
3.
Liu
,
S. J.
,
Wu
,
J. Y.
, and
Chang
,
J. H.
, 2000, “
An Experimental Matrix Design to Optimize the Weldline Strength in Injection Molded Parts
,”
Polym. Eng. Sci.
0032-3888,
40
(
5
), pp.
1256
1262
.
4.
Song
,
M. C.
,
Liu
,
Z.
,
Wang
,
M. J.
,
Yu
,
T. M.
, and
Zhao
,
D. Y.
, 2007, “
Research on Effects of Injection Process Parameters on the Molding Process for Ultra-Thin Wall Plastic Parts
,”
J. Mater. Process. Technol.
0924-0136,
187
, pp.
668
671
.
5.
Wang
,
T. H.
, and
Young
,
W. B.
, 2005, “
Study on Residual Stress of Thin-Walled Injection Molding
,”
Eur. Polym. J.
0014-3057,
41
(
10
), pp.
2511
2517
.
6.
Demirer
,
A.
,
Soydan
,
Y.
, and
Kapti
,
A. O.
, 2007, “
An Experimental Investigation of the Effects of Hot Runner System on Injection Moulding Process in Comparison With Conventional Runner System
,”
Mater. Des.
0264-1275,
28
(
5
), pp.
1467
1476
.
7.
Hassan
,
H.
,
Regnier
,
N.
,
Pujos
,
C.
, and
Defaye
,
G.
, 2008, “
Effect of Viscous Dissipation on the Temperature of the Polymer During Injection Molding Filling
,”
Polym. Eng. Sci.
0032-3888,
48
(
6
), pp.
1199
1206
.
8.
Candal
,
M. V.
,
Rojas
,
H.
, and
Jimenez
,
J.
, 2008, “
Effect of the Injection Molding Process Conditions Over the Determination of kt Curves for Plastic Parts
,”
Polym.-Plast. Technol. Eng.
0360-2559,
47
(
1
), pp.
89
95
.
9.
Chiang
,
H. H.
,
Hieber
,
C. A.
, and
Wang
,
K. K.
, 1991, “
A Unified Simulation of the Filling and Postfilling Stages in Injection-Molding. 1 Formulation
,”
Polym. Eng. Sci.
0032-3888,
31
(
2
), pp.
116
124
.
10.
Han
,
K. H.
, and
Im
,
Y. T.
, 1997, “
Compressible Flow Analysis of Filling and Post Filling in Injection Molding With Phase-Change Effect
,”
Compos. Struct.
0263-8223,
38
(
1–4
), pp.
179
190
.
11.
Verhoyen
,
O.
, and
Dupret
,
F.
, 1998, “
A Simplified Method for Introducing the Cross Viscosity Law in the Numerical Simulation of Hele Shaw Flow
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
74
(
1–3
), pp.
25
46
.
12.
Holm
,
E. J.
, and
Langtangen
,
H. P.
, 1998, “
A Unified Finite Element Model for the Injection Molding Process
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
(
3–4
), pp.
413
429
.
13.
Hieber
,
C. A.
, and
Shen
,
S. F.
, 1980, “
A Finite Element/Finite Difference Simulation of Injection-Molding Filling Process
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
7
(
1
), pp.
1
32
.
14.
Zhou
,
H.
,
Yan
,
B.
, and
Zhang
,
Y.
, 2008, “
3D Filling Simulation of Injection Molding Based on the PG Method
,”
J. Mater. Process. Technol.
0924-0136,
204
(
1–3
), pp.
475
480
.
15.
Tie
,
G.
,
Dequn
,
L.
, and
Huamin
,
Z.
, 2006, “
Three-Dimensional Finite Element Method for the Filling Simulation of Injection Molding
,”
Eng. Comput.
0263-4759,
21
, pp.
289
295
.
16.
Chang
,
R. Y.
,
Yang
,
W. H.
,
Hwang
,
S. J.
, and
Su
,
F.
, 2004, “
Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
(
1
), pp.
200
209
.
17.
Ilinca
,
F.
,
Hetu
,
J. F.
, and
Derdouri
,
A.
, 2006, “
Numerical Investigation of the Flow Front Behaviour in the Co-injection Moulding Process
,”
Int. J. Numer. Methods Fluids
0271-2091,
50
(
12
), pp.
1445
1460
.
18.
Estacio
,
K. C.
, and
Mangiavacchi
,
N.
, 2007, “
Simplified Model for Moulding Filling Simulations Using CVFEM and Unstructured Meshes
,”
Commun. Numer. Methods Eng.
1069-8299,
23
(
5
), pp.
345
361
.
19.
Araújo
,
B. J.
,
Teixeira
,
J. C. F.
,
Cunha
,
A. M.
, and
Groth
,
C. P. T.
, 2009, “
Parallel Three-Dimensional Simulation of the Injection Molding Process
,”
Int. J. Numer. Methods Fluids
0271-2091,
59
(
7
), pp.
801
815
.
20.
Lee
,
S. C.
,
Yang
,
D. Y.
,
Ko
,
J.
, and
Youn
,
J. R.
, 1997, “
Effect of Compressibility on Flow Field and Fiber Orientation During the Filling Stage of Injection Molding
,”
J. Mater. Process. Technol.
0924-0136,
70
(
1–3
), pp.
83
92
.
21.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
(
1
), pp.
201
225
.
22.
Ubbink
,
O.
, and
Issa
,
R. I.
, 1999, “
A Method for Capturing Sharp Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
0021-9991,
153
(
1
), pp.
26
50
.
23.
Voller
,
V. R.
, and
Prakash
,
C.
, 1987, “
A Fixed Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
8
), pp.
1709
1719
.
24.
Cross
,
M. M.
, 1979, “
Relation Between Viscoelasticity and Shear-Thinning Behavior in Liquids
,”
Rheol. Acta
0035-4511,
18
(
5
), pp.
609
614
.
25.
Tait
,
P. G.
, 1888, “
Physics and Chemistry of the Voyage H.M.S Challenger
,” (
HMSO
, London),
2
(
4
).
26.
Leonard
,
B. P.
, 1991, “
The ULTIMATE Conservative Difference Scheme to Unsteady One-Dimensional Advection
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
88
(
1
), pp.
17
74
.
27.
Karypis
,
G.
, and
Kumar
,
V.
, 1998, “
METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
,” Version 4.0 User’s Manual, University of Minnesota.
28.
Behrens
,
R. A.
, 1983, “
Transient Domain Free Surface Flows and Their Application to Mold Filling
,” Ph.D. thesis, University of Delaware, Newark, DE.
29.
Moldflow
, 2008,
Moldflow Plastic Insight 3-D, Version 6.2
,
Moldflow Corporation
,
Wayland, MA
.
30.
Tutar
,
M.
, and
Karakus
,
A.
, 2009, “
3-D Numerical Simulation of Polymer Injection Molding
,”
Proceedings of the Sixth International Conference on Computational Heat and Mass Transfer
, Guangzhou, China, May.
31.
Chen
,
S. C.
,
Chen
,
N. T.
,
Hsu
,
K. J.
, and
Hsu
,
K. F.
, 1996, “
Study of Polymer Melt Flow in Sequential Injection Molding Process
,”
AIChE J.
0001-1541,
42
, pp.
1706
1714
.
32.
Buchmann
,
M.
,
Theriault
,
R.
, and
Osswald
,
T. A.
, 1997, “
Polymer Flow Length Simulation During Injection Mold Filling
,”
Polym. Eng. Sci.
0032-3888,
37
(
3
), pp.
667
671
.
You do not currently have access to this content.