Ultrasonic-vibration-assisted grinding (UVAG) or rotary ultrasonic machining has been investigated both experimentally and theoretically. Effects of input variables on output variables in UVAG of brittle materials and titanium (Ti) have been studied experimentally. Models to predict the material removal rate in UVAG of brittle materials have been developed. However, there is no report on models of cutting force in UVAG. This paper presents a physics-based predictive model of cutting force in the UVAG of Ti. Using the model developed, influences of input variables on cutting force are predicted. These predicted influences are compared with those determined experimentally. This model can serve as a useful template and foundation for development of cutting force models in UVAG of other materials (such as ceramics and stainless steels) and models to predict torque, cutting temperature, tool wear, and surface roughness in UVAG.

1.
Froes
,
F.
,
Allen
,
P.
, and
Niinomi
,
M.
, 1998, “
Non-Aerospace Application of Titanium: An Overview
,”
Proceedings of the 1998 TMS Annual Meeting
, San Antonio, TX, Feb. 16–19, pp.
3
18
.
2.
Aust
,
E.
, and
Niemann
,
H.
, 1999, “
Machining of Gamma Ti–Al
,”
Adv. Eng. Mater.
1438-1656,
1
(
1
), pp.
53
57
.
3.
Kumar
,
K.
, 1991, “
Grinding Titanium
,”
J. Aerosp. Eng.
0893-1321,
11
(
9
), pp.
17
19
.
4.
Boyer
,
R.
, 1996, “
Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng., A
0921-5093,
213
(
1-2
), pp.
103
114
.
5.
Anonymous, 2008, “
Titanium Etching Offers Benefits to Aerospace Markets
,”
Aircraft Engineering and Aerospace Technology
,
80
(
1
), p.
91
.
6.
Montgomery
,
J.
, and
Well
,
M.
, 2001, “
Titanium Armor Applications in Combat Vehicles
,”
JOM
1047-4838,
53
(
4
), pp.
29
32
.
7.
Lerner
,
I.
, 2004, “
Titanium Market Recovering on Commercial Military Aircraft
,”
Chemical Market Reporter
,
266
(
18
), p.
17
.
8.
Yamashita
,
Y.
,
Tkayama
,
I.
,
Fujii
,
H.
, and
Yamazaki
,
T.
, 2002, “
Applications and Features of Titanium for Automotive Industry
,” Nippon Steel Technical Report No. 85.
9.
Farthing
,
T.
, 1979, “
Application of Titanium in the Chemical Industry
,”
Chemical Age of India
,
30
(
2
), pp.
151
166
.
10.
Orr
,
N.
, 1982, “
Industrial Application of Titanium in the Metallurgical and Chemical Industries
,”
Proceedings of the Technical Sessions at the 111th American Institute of Mining, Metallurgical and Petroleum Engineers
,
J. E.
Anderson
, ed.,
The Metallurgical Society of AIME
,
Dallas, TX
, Feb. 14–18, pp.
1149
1156
.
11.
Froes
,
F.
, 2002, “
Titanium Sport and Medical Application Focus
,”
Materials Technology
,
17
(
1
), pp.
4
7
.
12.
Abdullin
,
I.
,
Bagautinov
,
A.
, and
Ibragimov
,
G.
, 1988, “
Improving Surface Finish for Titanium Alloy Medical Instruments
,”
Biomed. Eng. (NY)
0006-3398,
22
(
2
), pp.
48
50
.
13.
Yang
,
X.
, and
Liu
,
R.
, 1999, “
Machining Titanium and Its Alloys
,”
Mach. Sci. Technol.
1091-0344,
3
(
1
), pp.
107
139
.
14.
Ezugwu
,
E. Q.
, 1997, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
0924-0136,
68
(
3
), pp.
262
274
.
15.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2005, “
Rotary Ultrasonic Machining of Titanium Alloy: A Feasibility Study
,”
Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition (IMECE)
, Orlando, FL, Nov. 5–11, Vol.
16-2
, pp.
885
892
.
16.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2006, “
Rotary Ultrasonic Machining of Titanium Alloy: Effects of Machining Variables
,”
Mach. Sci. Technol.
1091-0344,
10
(
3
), pp.
301
321
.
17.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2007, “
Rotary Ultrasonic Machining of Titanium Alloy (Ti-6Al-4V): Effects of Tool Variables
,”
Int. J. Precision Technology
,
1
(
1
), pp.
85
96
.
18.
Churi
,
N. J.
,
Li
,
Z. C.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
, 2007, “
Wheel Wear Mechanisms in Rotary Ultrasonic Machining of Titanium
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition (IMECE)
, Seattle, WA, Nov. 11–15, Vol.
3
, pp.
399
407
.
19.
Stinton
,
D.
, 1988, “
Assessment of the State of the Art Machining and Surface Preparation of Ceramics
,” Oak Ridge National Laboratory/TM Report No. 10791.
20.
Legge
,
P.
, 1966, “
Machining Without Abrasive Slurry
,”
Ultrasonics
0041-624X,
4
, pp.
157
162
.
21.
Kubota
,
M.
,
Tamura
,
Y.
, and
Shimamura
,
N.
, 1977, “
Ultrasonic Machining With a Diamond Impregnated Tool
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
11
(
3
), pp.
127
132
.
22.
Markov
,
A.
, 1977, “
Ultrasonic Drilling and Milling of Hard Non-Metallic Materials With Diamond Tools
,”
Machine and Tooling
,
48
(
9
), pp.
45
47
.
23.
Pei
,
Z. J.
,
Prabhakar
,
D.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1995, “
Rotary Ultrasonic Drilling and Milling of Ceramics
,”
Ceram. Trans.
1042-1122,
48
, pp.
185
196
.
24.
Petrukha
,
P.
, 1970, “
Ultrasonic Diamond Drilling of Deep Holes in Brittle Materials
,”
Russ. Eng. J.
0036-0228,
50
(
10
), pp.
70
74
.
25.
Prabhakar
,
D.
, 1992, “
Machining Advanced Ceramic Materials Using Rotary Ultrasonic Machining Process
,” MS thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL.
26.
Prabhakar
,
D.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1992, “
An Experimental Investigation of Material Removal Rates in Rotary Ultrasonic Machining
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
20
, pp.
211
218
.
27.
Wang
,
H.
, and
Lin
,
L.
, 1993, “
Improvement of Rotary Ultrasonic Deep Hole Drilling of Glass Ceramics-Zerodur
,”
Proceedings of the Seventh International Precision Engineering Seminar
, The Japan Society of Applied Physics, Kobe, Japan, pp.
719
730
.
28.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
, 1998, “
Modeling of Ductile-Mode Material Removal in Rotary Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
(
10–11
), pp.
1399
1418
.
29.
Pei
,
Z. J.
,
Prabhakar
,
D.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1995, “
A Mechanistic Approach to the Prediction of Material Removal Rates in Rotary Ultrasonic Machining
,”
ASME J. Eng. Ind.
0022-0817,
117
(
2
), pp.
142
151
.
30.
Zhang
,
Q. H.
,
Wu
,
C. L.
,
Sun
,
J. L.
, and
Jia
,
Z. X.
, 2000, “
Mechanism of Material Removal in Ultrasonic Drilling of Engineering Ceramics
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
214
(
9
), pp.
805
810
.
31.
Chao
,
C. L.
,
Chou
,
W. C.
,
Chao
,
C. W.
, and
Chen
,
C. C.
, 2007, “
Material Removal Mechanisms Involved in Rotary Ultrasonic Machining of Brittle Materials
,”
Key Eng. Mater.
1013-9826,
329
, pp.
391
396
.
32.
Prabhakar
,
D.
,
Pei
,
Z. J.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1993, “
A Theoretical Model for Predicting Material Removal Rates in Rotary Ultrasonic Machining of Ceramics
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
21
, pp.
167
172
.
33.
Shaw
,
M. C.
, 1996,
Principles of Abrasive Processing
,
Oxford University Press
,
New York
, p.
112
.
34.
Wu
,
Y. B.
,
Nomura
,
M.
,
Feng
,
Z. J.
, and
Kato
,
M.
, 2004, “
Modeling of Grinding Force in Constant-Depth-of-Cut Ultrasonically Assisted Grinding
,”
Mater. Sci. Forum
0255-5476,
471–472
, pp.
101
106
.
35.
Younis
,
M.
,
Sadek
,
M. M.
, and
EI-Wardani
,
T.
, 1987, “
New Approach to Development of a Grinding Force Model
,”
ASME J. Eng. Ind.
0022-0817,
109
(
4
), pp.
306
313
.
36.
Li
,
L. C.
, and
Fu
,
J.
, 1980, “
Study of Grinding Force Mathematical Model
,”
CIRP Ann.
0007-8506,
29
(
1
), pp.
245
249
.
37.
Lortz
,
W.
, 1979, “
A Model of the Cutting Mechanism in Grinding
,”
Wear
0043-1648,
53
(
1
), pp.
115
128
.
38.
Wener
,
G.
, 1978, “
Influence of Work Material on Grinding Force
,”
CIRP Ann.
0007-8506,
27
(
1
), pp.
243
248
.
39.
Collins
,
J. A.
, 1981,
Failure of Materials in Mechanical Design
,
Wiley
,
New York
, p.
591
.
You do not currently have access to this content.