Friction stir welding (FSW) of electrolytic tough pitch copper plates was conducted using a conventional CNC milling machine. The microstructure evolution of the weld was correlated with the process parameters used in the study and in conjunction with increasing temperatures during processing. When the optimum process parameters were achieved, a sound weld joint was obtained. The weldments were evaluated by microstructural analysis, using optical and scanning electron microscopes, and in terms of mechanical properties. At early stages of FSW and/or when using less than optimum welding parameters low temperatures result, metal does not plasticize effectively producing defects, such as large cavities, porosity, and poor bonding, due to the lack of plasticized material. Cavities were found at the advancing region of the weld, and in this area the finest grains were observed from the entire weld. The cavities were reduced, and the grain size increased further along in the weld as the temperature increased also. The typical weld nugget found in the friction stir welding of other metals was not observed in this case. Dynamic recrystallization was observed in the “stirred zone” of the weld; considering that the strain rate in this region was the same in all three cases, the difference in grain size was attributed to the differences in process temperature.

1.
Midling
,
O. T.
, and
Rorvik
,
G.
, 1999,
Proceedings of the First International Symposium on Friction Stir Welding, TWI
.
2.
Russell
,
M.
, and
Shercliff
,
H. R.
, 1999,
Proceedings of the First International Symposium on Friction Stir Welding, TWI
.
3.
Threadgill
,
P.
, 1977, TWI Bulletin, pp.
30
33
.
4.
Mahoney
,
M. W.
,
Rhodes
,
C. G.
,
Flintoff
,
J. G.
,
Bingel
,
W. H.
, and
Spurling
,
R. A.
, 1998, “
Properties of FSW 7075 T651 Aluminum
,”
Metall. Mater. Trans. A
1073-5623,
29
, pp.
1955
1964
.
5.
Rhodes
,
C. G.
, 1997, “
Effects of FSW on Microstructures of 7075 Aluminum
,”
Scr. Mater.
1359-6462,
36
(
1
), pp.
69
75
.
6.
Liu
,
G.
,
Murr
,
L. E.
,
Niou
,
C-S.
,
McClure
,
J. C.
, and
Vega
,
F. R.
, 1997, “
Microstructural Aspects of the FSW of 6061-T6 Aluminum
,”
Scr. Mater.
1359-6462,
37
(
3
), pp.
355
361
.
7.
Murr
,
L. E.
,
Liu
,
G.
, and
McClure
,
J. C.
, 1998, “
A TEM Study of Precipitation and Related Microstructures in Friction-Stir-Welded 6061 Aluminum
,”
J. Mater. Sci.
0022-2461,
33
, pp.
1243
1251
.
8.
Flores
,
O. V.
,
Kennedy
,
C.
,
Murr
,
L. E.
,
Brown
,
D.
,
Pappu
,
S.
,
Nowak
,
B. M.
, and
McClure
,
J. C.
, 1998, “
Microstructural Issues in FS Welded Aluminum Alloy
,”
Scr. Mater.
1359-6462,
38
(
5
), pp.
703
708
.
9.
Li
Y.
et al.
, 1998, “
Solid State Flow Visualization in the FSW of 2024 Al to 6061
,”
Scr. Mater.
1359-6462,
40
(
9
), pp.
1041
1046
.
10.
Valerio Flores
,
O.
,
Kennedy
,
C.
,
Murr
,
L. E.
,
Brown
,
D.
,
Pappu
,
S.
,
Nowak
,
B.
, and
McClure
,
J. C.
, 1998, “
Microstructures in Friction-Stir Welded Metals
,”
J. Mater. Process. Manuf. Sci.
1062-0656,
7
, pp.
703
708
.
11.
Benavides
,
S.
,
Li
,
Y.
,
Brown
,
D.
,
Murr
,
L. E.
, and
McClure
,
J. C.
, 1999, “
Low-Temperature Friction-Stir Welding of 2024 Aluminum
,”
Scr. Mater.
1359-6462,
41
(
8
), pp.
809
815
.
12.
Saukkonen
,
T.
,
Savolainen
,
K.
,
Mononen
,
J.
, and
Hanninen
,
H.
, 2005, “
Design of the Grain Structure in Copper by Friction Stir Process
,” Engineering Materials Laboratory, Helsinki University of Technology. Available at http://www.simr.se/HEMSIDA/IMHem.nsf/28eca27ed1db5bb6c1256a2500292c45/e0e4740731ccd761c1256e84004a99ab/$FILE/T%20Saukkonen%20EBSD%20FSP%20Cu.pdfhttp://www.simr.se/HEMSIDA/IMHem.nsf/28eca27ed1db5bb6c1256a2500292c45/e0e4740731ccd761c1256e84004a99ab/$FILE/T%20Saukkonen%20EBSD%20FSP%20Cu.pdf.
13.
Lienert
,
T. J.
,
Stellwag
,
W. L.
, Jr.
,
Grimmet
,
B. B.
, and
Warke
,
R. W.
, 2003, “
Friction Stir Welding Studies on Mild Steel
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
82
, pp.
1s
9s
.
14.
Smart
,
J.
,
Smith
,
A.
, and
Phillips
,
A.
, 1941, “
Preparation and Some Properties of High Purity Copper
,”
Trans. AIME
0096-4778,
143
, pp.
272
286
.
15.
Park
,
H. S.
,
Kimura
,
T.
,
Murakamic
,
T.
,
Nagano
,
Y.
,
Nakata
,
K.
, and
Ushio
,
M.
, 2004, “
Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu–40% Zn Copper alloy
,”
Mater. Sci. Eng., A
0921-5093,
371
, pp.
160
169
.
16.
Salem
,
H. G.
, 2003, “
Friction Stir Weld Evolution of Dynamically Recrystallized AA 2095 Weldments
,”
Scr. Mater.
1359-6462,
49
, pp.
1103
1110
.
17.
Peel
,
M.
,
Steuwer
,
A.
,
Preuss
,
M.
, and
Withers
,
P. J.
, 2003, “
Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminum AA5083 Friction Stir Welds
,”
Acta Mater.
1359-6454,
51
, pp.
4791
4801
.
18.
Prangnell
,
P. B.
, and
Heason
,
C. P.
, 2005, “
Grain Structure Formation During Friction Stir Welding Observed by the Stop Action Technique
,”
Acta Mater.
1359-6454,
53
, pp.
3179
3192
.
19.
Seidel
,
T. U.
, and
Reynolds
,
A.
, 2003, “
Two-Dimensional Friction Stir Welding Process Model Based on Fluid Mechanics
,”
Sci. Technol. Weld. Joining
1362-1718,
8
, pp.
175
183
.
20.
Chang
,
C. I.
,
Lee
,
C. J.
, and
Huang
,
J. C.
, 2004, “
Relationship Between Grain Size and Zener-Hollomon Parameter During Friction Stir Processing in AZ31 Mg Alloys
,”
Scr. Mater.
1359-6462,
51
, pp.
509
514
.
21.
Zener
,
C.
, and
Hollomon
,
H. H.
, 1944, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
0021-8979,
15
, pp.
22
32
.
22.
Prasad
,
Y. V. R. K.
, and
Rao
,
K. P.
, 2004, “
Mechanisms of High Temperature Deformation in Electrolytic Copper in Extended Ranges of Temperature and Strain Rates
,”
Mater. Sci. Eng., A
0921-5093,
374
, pp.
335
341
.
23.
1990,
Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
, 10th ed., Vol.
2
,
American Society Metals
,
Metals Park, OH
.
You do not currently have access to this content.