Most of the methods for generating regular surface texture (RST) consist of shaping a set of regular grooves (cavities) arranged in a regular way. This paper presents possibilities for regular surface texture generation by so-called “pattern grinding” with the wheel prepared in a special way. The simple variant of the method involves grinding with the wheel having helical grooves. The grooves shaped on the work material are the result of specific wheel surface reproduction. The ratio between work-material feed and wheel speed is an important factor, determining the layout of the grooves generated on the work-material and the shape of the groove sides. Surface texture consists of two components: deterministic, resulting from the nominal wheel active surface, and random, resulting from the random shape and arrangement of abrasive grains. The limited contribution of the random component of surface texture is discussed based on the ratio between the undeformed chip thickness and the sizes of the grooves. Kinematical analysis of the wheel reproduction process is performed for description of nominal surface texture. Experimental results of flat and cylindrical surfaces, obtained with pattern grinding are also provided. Two critical values of the ratio between work-material feed and wheel speed were derived, and three ranges of this ratio are discussed. The kinematical approach provided relationships between input data of the process (wheel shape and grinding parameters) and nominal groove dimensions and groove layout. The geometrical characteristics of the work-material nominal surface texture are presented for each of the three types of surface texture. It is important to ensure that the work feeds are greater than the lower critical value. For achievable work feeds the shape of the sides of the grooves is cycloid. Experiments revealed the limited contribution of the random component of the surface structure of the work material. Random arrangement of abrasive grains is important only at local (micro-) level and affects the roughness of groove bottoms, while the dimensions and arrangement of the grooves are affected only to a minimal degree.

1.
Renker
,
H. J.
, 1983, “
Surface Texture of Production Parts and Their Functions
,” Studer AG, Technical Information No. 19, pp.
1
8
.
2.
Axelrad
,
D. R.
,
Kops
,
L.
, and
Rao
,
M. K. R.
, 1986, “
Characterization of Surface for the Description of Their Functional Behaviour in Contact Problems
,”
CIRP Ann.
0007-8506,
35
(
1
), pp.
405
408
.
3.
De Bruin
,
W.
, 1986, “
Surface and Function
,”
CIRP Ann.
0007-8506,
35
(
2
), pp.
551
559
.
4.
Suh
,
N. P.
, and
Saka
,
N.
, 1987, “
Surface Engineering
,”
CIRP Ann.
0007-8506,
36
(
1
), pp.
403
408
.
5.
Jiaa
,
C. L.
,
Teng
,
E.
, and
Eltoukhy
,
A.
, 1995, “
Surface Microtexture Characteristics of Alternative Substrate Thin Film Media and Their Relationship to Tribological Performance
,”
Surf. Coat. Technol.
,
73
, pp.
79
90
. 0257-8972
6.
Bell
,
T.
,
Mao
,
K.
, and
Sun
,
Y.
, 1998, “
Surface Engineering Design: Modelling Surface Engineering Systems for Improved Tribological Performance
,”
Surf. Coat. Technol.
,
108–109
, pp.
360
368
. 0257-8972
7.
Scott
,
P. J.
, 1998, “
Foundations of Topological Characterization of Surface Texture
,”
Int. J. Mach. Tools Manuf.
,
38
(
5–6
), pp.
559
566
. 0890-6955
8.
Stout
,
K. J.
, 1998, “
Engineering Surfaces: A Philosophy of Manufacture (a Proposal for Good Manufacturing Practice)
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
212
, pp.
169
174
.
9.
Evans
,
C.
, and
Bryan
,
J.
, 1999, “
“Structured,” “Textured,” or “Engineered” Surfaces
,”
CIRP Ann.
0007-8506,
48
(
2
), pp.
541
545
.
10.
De Chiffre
,
L.
,
Lonardo
,
P.
,
Trumpold
,
H.
,
Lucca
,
D. A.
,
Goch
,
G.
,
Brown
,
C. A.
, and
Hansen
,
H. N.
, 2000, “
Quantitative Characterisation of Surface Texture
,”
CIRP Ann.
0007-8506,
49
(
2
), pp.
635
368
.
11.
Stout
,
K. J.
, and
Blunt
,
L.
, 2001, “
A Contribution to the Debate on Surface Classifications—Random, Systematic, Unstructured, Structured and Engineered
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
2039
2044
. 0890-6955
12.
Gao
,
W.
,
Araki
,
T.
,
Kiyono
,
S.
,
Okazaki
,
Y.
, and
Yamanaka
,
M.
, 2003, “
Precision Nanofabrication and Evaluation of a Large Area Sinusoidal Grid Surface for a Surface Encoder
,”
Precis. Eng.
0141-6359,
27
, pp.
289
298
.
13.
Ike
,
H.
, 1996, “
Properties of Metal Sheets With 3-D Designed Surface Microgeometry Prepared by Special Rolls
,”
J. Mater. Process. Technol.
0924-0136,
60
, pp.
363
368
.
14.
Pettersson
,
U.
, and
Jacobson
,
S.
, 2006, “
Tribological Texturing of Steel Surfaces With a Novel Diamond Embossing Tool Technique
,”
Tribol. Int.
,
39
, pp.
695
700
. 0301-679X
15.
Forniés
,
E.
,
Zaldo
,
C.
, and
Albella
,
J. M.
, 2005, “
Control of Random Texture of Monocrystalline Silicon Cells by Angle-Resolved Optical Reflectance
,”
Sol. Energy Mater. Sol. Cells
,
87
, pp.
583
593
. 0927-0248
16.
Xi
,
Z.
,
Yang
,
D.
, and
Que
,
D.
, 2003, “
Texturization of Monocrystalline Silicon With Tribasic-Sodium Phosphate
,”
Sol. Energy Mater. Sol. Cells
,
77
, pp.
255
263
. 0927-0248
17.
Schneider
,
Y. G.
, 1984, “
Formation of Surface With Uniform Micropatterns on Precision Machine and Instrument Parts
,”
Precis. Eng.
0141-6359,
6
(
4
), pp.
219
225
.
18.
Bulatov
,
V. P.
,
Krasny
,
V. A.
, and
Schneider
,
Y. G.
, 1997, “
Basic of Machining Methods to Yield Wear- and Fretting-Resistive Surfaces, Having Roughness Patterns
,”
Wear
0043-1648,
208
, pp.
132
137
.
19.
Arola
,
D.
,
McCain
,
M. L.
,
Kunaporn
,
S.
, and
Ramulu
,
M.
, 2001, “
Waterjet and Abrasive Waterjet Surface Treatment of Titanium: A Comparison of Surface Texture and Residual Stress
,”
Wear
0043-1648,
249
, pp.
943
950
.
20.
Ramasawmy
,
H.
, and
Blunt
,
L.
, 2004, “
Effect of EDM Process Parameters on 3D Surface Topography
,”
J. Mater. Process. Technol.
,
148
, pp.
155
164
. 0924-0136
21.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
, 2005, “
The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes During Unidirectional Sliding Contact
,”
Tribol. Int.
0301-679X,
38
, pp.
219
225
.
22.
Choo
,
L.
,
Ogawa
,
Y.
,
Kanbargi
,
G.
,
Otra
,
V.
,
Raff
,
L. M.
, and
Komanduri
,
R.
, 2004, “
Micromachining of Silicon by Short-Pulse Laser Ablation in Air and Under Water
,”
Mater. Sci. Eng., A
0921-5093,
A372
, pp.
145
162
.
23.
Du
,
D.
,
He
,
Y. F.
,
Sui
,
B.
,
Xiong
,
L. J.
, and
Zhang
,
H.
, 2005, “
Laser Texturing of Rollers by Pulsed Nd:YAG Laser
,”
J. Mater. Process. Technol.
,
161
, pp.
456
461
. 0924-0136
24.
Hong
,
M. H.
,
Huang
,
S. M.
,
Luk’yanchuk
,
B. S.
, and
Chong
,
T. C.
, 2003, “
Laser Assisted Surface Nanopatterning
,”
Sens. Actuators, A
,
108
, pp.
69
74
. 0250-6874
25.
Lee
,
Y. -C.
,
Chen
,
C. -M.
, and
Wu
,
C. -Y.
, 2005, “
A New Excimer Laser Micromachining Method for Axially Symmetric 3D Microstructures with Continuous Surface Profiles
,”
Sens. Actuators
,
117
, pp.
349
355
. 0250-6874
26.
Man
,
H. C.
,
Zhang
,
S.
,
Cheng
,
F. T.
, and
Guo
,
X.
, 2005, “
Laser Fabrication of Porous Surface Layer on NiTi Shape Memory Alloy
,”
Mater. Sci. Eng., A
,
A404
, pp.
173
178
. 0025-5416
27.
Stępień
,
P.
, 1989, “
Generation of Regular Patterns on Ground Surfaces
,”
CIRP Ann.
0007-8506,
38
(
1
), pp.
561
566
.
28.
Stępień
,
P.
, 1994, “
Oberflächengestaltung gasdynamischer Lager und Dichtungen
,”
Industrie Diamanten Rundschau
,
2
, pp.
108
114
.
29.
Stępień
,
P.
, and
Bałasz
,
B.
, 2006, “
Simulation of the Formation Process of Regular Grooves on the Ground Surface
,”
Proceedings of the Fourth Annual Industrial Simulation Conference
, Eurosis, Palermo, pp.
269
276
.
30.
Stępień
,
P.
, 2006, “
Three Basic Types of Regular Surface Texture Generated by plunge Grinding With the Wheel Having Helical Grooves
,”
Advances in Manufacturing Science and Technology
,
30
(
3
), pp.
37
54
.
31.
Stępień
,
P.
, 2007, “
Grinding Forces in Regular Surface Texture Generation
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
2098
2110
. 0890-6955
32.
Stępień
,
P.
, 2008, “
The Mechanism of Grinding Wheel Surface Reproduction in Regular Surface Texture Generation
,”
Surf. Eng.
0267-0844,
24
(
3
), pp.
219
225
.
33.
Yokogawa
,
K.
, 1974, “
Einfluß der Abricht- und Schleifbedingungen auf die Rauheit und Rundheit geschliffener Oberflachen
,”
Werkstatt und Betrieb
,
9
, pp.
513
588
.
34.
Verkerk
,
J.
, and
Pekelharing
,
A. J.
, 1976, “
Kinematical Approach to the Effect of Wheel Dressing Conditions on the Grinding Process
,”
CIRP Ann.
0007-8506,
25
(
1
), pp.
209
214
.
35.
Verkerk
,
J.
, and
Pekelharing
,
A. J.
, 1979, “
The Influence of the Dressing Operation on Productivity in Precision Grinding
,”
CIRP Ann.
0007-8506,
28
(
2
), pp.
487
495
.
36.
Verkerk
,
J.
, 1976, “
Final Report Concerning CIRP Cooperative Work on the Characterization of Grinding Wheel Topography
,”
CIRP Ann.
0007-8506,
25
(
1
), pp.
209
215
.
37.
Renker
,
H. J.
, 1981, “
The Identification of Grinding Faults from Appearance of Ground Surface
,” Studer AG, Technical Information No. 10, pp.
1
12
.
You do not currently have access to this content.