A lumped parameter dynamical model is developed to describe the metal transfer for gas metal arc welding in the globular mode. The oscillations of molten drop are modeled using a mass-spring-damper system with variable mass and spring coefficient. An analytical solution is developed for the variable coefficient system to better understand the effect of various model parameters on the drop oscillations. The effect of welding drop motion on the observed current and voltage signals is investigated, and the model agrees well with the experimental results. Furthermore, the effect of wire feeding rate (or welding current) on the metal transfer cycle time is studied, and the model successfully estimates the cycle times for different wire feeding rates. Possible regions of unstable metal transfer are investigated both by the model and experiments. The model can be used to identify the range of welding wire feed rates that results in stable metal transfer during the globular mode of metal transfer.

1.
Chu
,
Y. X.
,
Hu
,
S. J.
,
Hou
,
W. K.
,
Wang
,
P. C.
, and
Marin
,
S. P.
, 2004, “
Signature Analysis for Quality Monitoring in Short Circuit GMAW
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
81
(
12
), pp.
336s
343s
.
2.
Haidar
,
J.
, and
Lowke
,
J. J.
, 1996, “
Predictions of Metal Droplet Formation in Gas Metal Arc Welding
,”
J. Phys. D
0022-3727,
29
(
12
), pp.
2951
2960
.
3.
Wang
,
F.
,
Hou
,
W. K.
,
Hu
,
S. J.
,
Kannatey-Asibu
,
E.
,
Schultz
,
W. W.
, and
Wang
,
P. C.
, 2003, “
Modeling and Analysis of Metal Transfer in Gas Metal Arc Welding
,”
J. Phys. D
0022-3727,
36
(
9
), pp.
1143
1152
.
4.
Fan
,
H. G.
, and
Kovacevic
,
R.
, 1998, “
Dynamic Analysis of Globular Metal Transfer in Gas Metal Arc Welding: A Comparison of Numerical and Experimental Results
,”
J. Phys. D
0022-3727,
31
(
20
), pp.
2929
2941
.
5.
Xu
,
G.
,
Schultz
,
W. W.
, and
Kannatey-Asibu
,
E.
, 2005, “
Application of a Front Tracking Method in Gas Metal Arc Welding (GMAW) Simulation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
590
597
.
6.
Shaw
,
R.
, 1984,
The Dripping Faucet as a Model Chaotic System
,
Aerial
,
Santa Cruz, CA
.
7.
Martien
,
P.
,
Pope
,
S. C.
,
Scott
,
P. L.
, and
Shaw
,
R. S.
, 1985, “
The Chaotic Behavior of the Leaky Faucet
,”
Phys. Lett.
0375-9601,
110A
(
7–8
), pp.
399
404
.
8.
D’Innocenzo
,
L.
, and
Renna
,
L.
, 1996, “
Analytical Solution of the Dripping Faucet Dynamics
,”
Phys. Lett. A
0375-9601,
220
(
1-3
), pp.
75
80
.
9.
D’Innocenzo
,
A.
, and
Renna
,
L.
, 1997, “
Modeling Leaky Faucet Dynamics
,”
Phys. Rev. E
1063-651X,
55
(
6
), pp.
6776
6790
.
10.
Renna
,
L.
, 2001, “
Mass on a Spring Map for the Dripping Faucet at Low Flow Rates
,”
Phys. Rev. E
1063-651X,
64
(
4
), p.
046213
.
11.
Choi
,
J. H.
,
Lee
,
J.
, and
Yoo
,
C. D.
, 2001, “
Dynamic Force Balance Model for Metal Transfer Analysis in Arc Welding
,”
J. Phys. D
0022-3727,
34
(
17
), pp.
2658
2664
.
12.
Jones
,
L. A.
,
Eager
,
T. W.
, and
Lang
,
J. H.
, 1998, “
A Dynamic Model of Drops Detaching From a Gas Metal Arc Welding Electrode
,”
J. Phys. D
0022-3727,
31
(
1
), pp.
107
123
.
13.
Kiyono
,
K.
, and
Fuchikami
,
N.
, 1999, “
Dripping Faucet Dynamics Clarified by an Improved Mass-Spring Model
,”
J. Phys. Soc. Jpn.
0031-9015,
68
(
10
), pp.
3259
3270
.
14.
Lesnewitch
,
A.
, 1958, “
Control of Melting Rate and Metal Transfer in Gas-Shielded Metal-Arc Welding: Part I—Control of Electrode Melting Rate
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
61
(
8
), pp.
343s
353s
.
15.
Amson
,
J. C.
, 1962, “
An Analysis of the Gas-shielded Consumable Metal Arc Welding System
,”
Br. Weld. J.
0524-6806,
41
, pp.
232
249
.
16.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
, 1997, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
18
, pp.
1
22
.
17.
Shepard
,
M. E.
, 1991, “
Modeling of Self-Regulation in Gas-Metal Arc Welding
,” Ph.D. thesis, Electrical Engineering Department, Vanderbilt University, Nashville, TN.
You do not currently have access to this content.