Thermal errors are among the most significant contributors to machine tool errors. Successful reduction in thermal errors has been realized through thermal error compensation techniques in the past few decades. The effectiveness of thermal error models directly determines the compensation results. Most of the current thermal error modeling methods are empirical and highly rely on the collected data under specific working conditions, neglecting the insight into the underlying mechanisms that result in thermal deformations. In this paper, an innovative temperature sensor placement scheme and thermal error modeling strategy are proposed based on the thermal mode concept. The modeling procedures for both position independent and position dependent thermal errors are illustrated through numerical simulation and experiments. Satisfactory results have been achieved in terms of model accuracy and robustness.

1.
Bryan
,
J. B.
, 1990, “
International Status of Thermal Error Research (1990)
,”
CIRP Ann.
0007-8506,
39
(
2
), pp.
645
656
.
2.
Donmez
,
M. A.
,
Blomquist
,
D. S.
,
Hocken
,
R. J.
,
Liu
,
C. R.
, and
Barash
,
M. M.
, 1986, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precis. Eng.
0141-6359,
8
(
4
), pp.
187
196
.
3.
Balsamo
,
A.
,
Marques
,
D.
, and
Sartori
,
S.
, 1990, “
A Method for Thermal Deformation Corrections of CMMs
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
557
560
.
4.
Chen
,
J. S.
,
Yuan
,
J.
,
Ni
,
J.
, and
Wu
,
S. M.
, 1993, “
Real-Time Compensation for Time-Variant Volumetric Error on a Machining Center
,”
ASME J. Eng. Ind.
0022-0817,
115
(
4
), pp.
472
479
.
5.
Mou
,
J.
,
Donmez
,
M. A.
, and
Cetinkunt
,
S.
, 1995, “
An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement. Part I: Theory Derivation
,”
ASME J. Eng. Ind.
0022-0817,
117
(
4
), pp.
584
590
.
6.
Mou
,
J.
,
Donmez
,
M. A.
, and
Cetinkunt
,
S.
, 1995, “
An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement. Part II: Experimental Verification
,”
ASME J. Eng. Ind.
0022-0817,
117
(
4
), pp.
591
600
.
7.
Ni
,
J.
, 1997, “
CNC Machine Accuracy Enhancement through Real-Time Error Compensation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
4B
), pp.
717
725
.
8.
Chen
,
J. S.
, 1996, “
A Study of Thermally Induced Machine Tool Errors in Real Cutting Conditions
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
12
), pp.
1401
1411
.
9.
Yang
,
S.
,
Yuan
,
J.
, and
Ni
,
J.
, 1996, “
The Improvement of Thermal Error Modeling and Compensation on Machine Tools by Neural Network
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
4
), pp.
527
537
.
10.
Srinivasa
,
N.
, and
Ziegert
,
J. C.
, 1997, “
Prediction of Thermally Induced Time-Variant Machine Tool Error Maps Using a Fuzzy ARTMAP Neural Network
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
4A
), pp.
623
630
.
11.
Mou
,
J.
, 1997, “
A Method of Using Neural Networks and Inverse Kinematics for Machine Tools Error Estimation and Correction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
2
), pp.
247
254
.
12.
Wang
,
K. C.
,
Tseng
,
P. C.
, and
Lin
,
K. M.
, 2006, “
Thermal Error Modeling of a Machining Center Using Grey System Theory and Adaptive Network-Based Fuzzy Inference System
,”
JSME Int. J., Ser. C
1340-8062,
49
(
4
), pp.
1179
1187
.
13.
Yang
,
H.
, and
Ni
,
J.
, 2003, “
Dynamic Modeling for Machine Tool Thermal Error Compensation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
2
), pp.
245
254
.
14.
Yang
,
H.
, and
Ni
,
J.
, 2005, “
Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
4–5
), pp.
455
465
.
15.
Kurtoglu
,
A.
, 1990, “
The Accuracy Improvement of Machine Tools
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
417
419
.
16.
Lo
,
C. H.
,
Yuan
,
J.
, and
Ni
,
J.
, 1999, “
Optimal Temperature Variable Selection by Grouping Approach for Thermal Error Modeling and Compensation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
9
), pp.
1383
1396
.
17.
Lee
,
J. H.
, and
Yang
,
S. H.
, 2002, “
Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
1
), pp.
147
155
.
18.
Lo
,
C. H.
, 1994, “
Real-Time Error Compensation on Machine Tools Through Optimal Thermal Error Modeling
,” Ph.D. thesis, the University of Michigan, Ann Arbor, MI.
19.
Ma
,
Y.
,
Yuan
,
J.
, and
Ni
,
J.
, 1999, “
A Strategy for the Sensor Placement Optimization for Machine Thermal Error Compensation
,”
American Society of Mechanical Engineers, Manufacturing Engineering Division
, Atlanta, GA, Vol.
10
, pp.
629
637
.
20.
Ma
,
Y.
, 2001, “
Sensor Placement Optimization for Thermal Error Compensation on Machine Tools
,” Ph.D. thesis University of Michigan, Ann Arbor, MI.
21.
Shah
,
P. C.
, and
Udwadia
,
F. E.
, 1978, “
A Methodology for Optimal Sensor Location for Identification of Dynamic System
,”
ASME J. Appl. Mech.
0021-8936,
45
(
1
), pp.
188
196
.
22.
Juang
,
J. N.
, and
Pappa
,
R. S.
, 1985, “
Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
0731-5090,
8
(
5
), pp.
620
627
.
23.
Salama
,
M.
,
Rose
,
T.
, and
Garba
,
J.
, 1987, “
Optimal Placement of Excitations and Sensors for Verification of Large Dynamical Systems
,”
Proceedings of the 28th Structures, Structural Dynamics, and Materials Conference
,
Monterey, CA
, April 6–8, pp.
1024
1031
.
24.
Kammer
,
D. C.
, 1991, “
Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guid. Control Dyn.
0731-5090,
14
(
2
), pp.
251
259
.
25.
Moriwaki
,
T.
, 1988, “
Thermal Deformation and Its Online Compensation of Hydrostatically Supported Precision Spindle
,”
CIRP Ann.
0007-8506,
37
(
1
), pp.
283
286
.
26.
Jedrzejewski
,
I.
,
Kaczmarek
,
J.
,
Kowal
,
Z.
, and
Winiarski
,
Z.
, 1990, “
Numerical Optimization of Thermal Behavior of Machine Tools
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
109
112
.
27.
Attia
,
M. H.
, and
Fraser
,
S.
, 1999, “
A Generalized Modeling Methodology for Optimized Real-Time Compensation of Thermal Deformation of Machine Tools and CMM Structures
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
6
), pp.
1001
1016
.
28.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
, 2004, “
Control-Oriented Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
286
296
.
29.
Coutinho
,
A. L. G. A.
,
Landau
,
L.
,
Wrobel
,
L. C.
, and
Ebecken
,
F. F.
, 1989, “
Modal Solution of Transient Heat Conduction Utilizing Lanczos Algorithm
,”
Int. J. Numer. Methods Eng.
0029-5981,
28
(
1
), pp.
13
25
.
30.
Dos Santos
,
F. C.
,
Coutinho
,
A. L. G. A.
, and
Landau
,
L.
, 1990, “
New Load Dependent Methods for Modal Solution of Transient Heat Conduction
,”
Proceedings of the International Conference on Advanced Computational Methods in Heat Transfer
,
Southampton, UK
, July 17–19, Vol.
1
, pp.
51
59
.
31.
Matsuo
,
M.
,
Yasui
,
T.
,
Inamura
,
T.
, and
Matsumura
,
M.
, 1986, “
High-Speed Test of Thermal Effects for a Machine-Tool Structure Based on Modal Analysis
,”
Precis. Eng.
0141-6359,
8
(
2
), pp.
72
78
.
32.
Weck
,
M.
,
Mckeown
,
P.
,
Bonse
,
R.
, and
Herbst
,
U.
, 1995, “
Reduction and Compensation of Thermal Errors in Machine Tools
,”
CIRP Ann.
0007-8506,
44
(
2
), pp.
589
598
.
33.
Ahn
,
J. Y.
, and
Chung
,
S. C.
, 2004, “
Real-Time Estimation of the Temperature Distribution and Expansion of a Ball Screw System Using an Observer
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
218
(
12
), pp.
1667
1681
.
You do not currently have access to this content.