Fixtures control the positions and orientations of parts in an assembly process. Inaccuracies of fixture locators or nonoptimal fixture layouts can result in the deviation of a workpiece from its design nominal and lead to overall product dimensional variability and low process yield. Major challenges involving the design of a set of fixture layouts for multistation assembly system can be enumerated into three categories: (1) high-dimensional design space since a large number of locators are involved in the multistation system, (2) large and complex design space for each locator since the design space represents the area of a particular part or subassembly surfaces on which a locator is placed, (here, the design space varies with a particular part design and is further expanded when parts are assembled into subassemblies), and (3) the nonlinear relations between locator nominal positions and key product characteristics. This paper presents a new approach to improve process yield by determining an optimum set of fixture layouts for a given multistation assembly system, which can satisfy (1) the part and subassembly locating stability in each fixture layout and (2) the fixture system robustness against environmental noises in order to minimize product dimensional variability. The proposed methodology is based on a two-step optimization which involves the integration of genetic algorithm and Hammersley sequence sampling. First, genetic algorithm is used for design space reduction by estimating the areas of optimal fixture locations in initial design spaces. Then, Hammersley sequence sampling uniformly samples the candidate sets of fixture layouts from those predetermined areas for the optimum. The process yield and part instability index are design objectives in evaluating candidate sets of fixture layouts. An industrial case study illustrates and validates the proposed methodology.

1.
Chou
,
Y.-C.
,
Chandru
,
V.
, and
Barash
,
M. M.
, 1989, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
111
(
2
), pp.
299
306
.
2.
Shalon
,
D.
,
Gossard
,
D.
,
Ulrich
,
K.
, and
Fitzpatrick
,
D.
, 1992, “
Representing Geometric Variations in Complex Structural Assemblies on CAD Systems
,” ASME Paper No. DE-44/2, pp.
121
132
.
3.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Kumar
,
R.
,
Zhou
,
Y.
, 2004, “
Time-based Competition in Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology-Review
,”
International Journal of Flexible Manufacturing Systems
,
16
(
1
), pp.
11
44
.
4.
Ceglarek
,
D.
, and
Shi
,
J.
, 1995, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manuf. Rev.
0896-1611,
8
(
2
), pp.
139
154
.
5.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
212
, pp.
756
762
.
6.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Modeling and Diagnosis of Multistage Manufacturing Process: Part I State Space Model
,”
Proceedings of 2000 Japan-USA Symposium of Flexible Automation
, July 23–26,
Ann Arbor
,
MI
, Paper No. 2000JUSFA-13146.
7.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-station Assembly Systems with Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
8.
Huang
,
W.
,
Lin
,
J.
,
Bezdecny
,
M. R.
, and
Ceglarek
,
D.
, 2007, “
Stream of Variation in 3D Assembly I: Generalized Rigid Body Model for Single Station
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
821
831
.
9.
Huang
,
W.
,
Lin
,
J.
,
Zhou
,
S.
, and Ceglarek, 2007, “
Stream-of-Variation (SOVA) Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multi Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
4
), pp.
832
842
.
10.
Shiu
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
Multi-stations Sheet Metal Assembly Modeling and Diagnostics
,”
Trans. NAMRI/SME
1047-3025,
24
, pp.
199
204
.
11.
DeMeter
,
E. C.
, 1994, “
Restraint Analysis of Fixtures Which Rely on Surface-Contact
,”
ASME J. Eng. Ind.
0022-0817,
116
(
2
), pp.
207
215
.
12.
Rong
,
Y.
, and
Zhu
,
Y.
, 1999,
Computer-Aided Fixture Design
,
Dekker
,
Dordrecht
.
13.
Rong
,
Y.
, and
Bai
,
Y.
, 1996, “
Machining Accuracy Analysis for Computer-Aided Fixture Design Verification
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
(
3
), pp.
289
300
.
14.
Roy
,
U.
, and
Liao
,
J.
, 2002, “
Fixturing Analysis for Stability Consideration in an Automated Fixture Design System
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
98
104
.
15.
Wang
,
M. Y.
, 2000, “
An Optimum Design for 3-D Fixture Synthesis in a Point Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
839
846
.
16.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1997, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
17.
Wang
,
M. Y.
, and
Pelinescu
,
D. M.
, 2001, “
Optimizing Fixture Layout in a Point-Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
312
323
.
18.
Carlson
,
J. S.
, 2001, “
Quadratic Sensitivity Analysis of Fixtures and Locating Schemes for Rigid Parts
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
462
472
.
19.
Menassa
,
R. J.
, and
DeVries
,
W. R.
, 1991, “
Optimization Methods Applied to Selecting Support Positions in Fixture Design
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
412
418
.
20.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1996, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
(
3
), pp.
318
324
.
21.
Krishnakumar
,
K.
, and
Melkote
,
S. N.
, 2000, “
Machining Fixture Layout Optimization using the Genetic Algorithm
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
4
), pp.
579
598
.
22.
Li
,
B.
, and
Melkote
,
S. N.
, 2001, “
Optimal Fixture Design Accounting for the Effect of Workpiece Dynamics
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
18
, pp.
701
707
.
23.
De Meter
,
E. C.
, 1995, “
Min-Max Load Model for Optimizing Machining Fixture Performance
,”
ASME J. Eng. Ind.
0022-0817,
117
, pp.
186
193
.
24.
Marin
,
R. A.
, and
Ferreira
,
P. M.
, 2001, “
Kinematic Analysis and Synthesis of Deterministic 3-2-1 Locator Schemes for Machining Fixtures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
708
719
.
25.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2004, “
Impact of Fixture Design on Sheet Metal Assembly Variation
,”
J. Manuf. Syst.
0278-6125,
23
(
3
), pp.
182
193
.
26.
Kim
,
P.
, and
Ding
,
Y.
, 2004, “
Optimal Design of Fixture Layout in Multistation Assembly Processes
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
1
(
2
), pp.
133
145
.
27.
Izquierdo
,
E. L.
,
Du
,
H.
,
Hu
,
S. J.
,
Jin
,
R.
,
Shi
,
R. J.
, and
Jee
,
H.
, 2006, “
Robust Fixture Layout Design for a Product Family Assembled in a Multistage Reconfigurable Line
,”
Proceedings of 2006 ASME International Conference on Manufacturing Sciences and Engineering
, October 8–11,
Ypsilanti
,
MI
.
28.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State-Space Modeling for Dimensional Monitoring of Multistage Machining Process using Differential Motion Vector
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
, pp.
296
308
.
29.
Cook
,
R. D.
, and
Nachtscheim
,
C. J.
, 1980, “
A Comparison for Constructing Exact D-Optimal Designs
,”
Technometrics
0040-1706,
22
(
3
), pp.
315
324
.
30.
Taam
,
W.
,
Subbaiah
,
P.
, and
Liddy
,
J. W.
, 1993, “
A Note on Multivariate Capability Indices
,”
Journal of Applied Statistics
,
20
(
3
), pp.
339
351
.
31.
Huang
,
W.
,
Ceglarek
,
D.
, and
Zhou
,
Z.
, 2004, “
Tolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical Net Method (NT-net)
,”
International Journal of Flexible Manufacturing Systems
,
16
, pp.
65
90
.
32.
Kalagnanam
,
J. R.
, and
Diwekar
,
U. M.
, 1997, “
An Efficient Sampling Technique for Off-Line Quality Control
,”
Technometrics
0040-1706,
3
(
3
), pp.
308
319
.
33.
Huang
,
W.
,
Phoomboplab
,
T.
, and
Ceglarek
,
D.
, 2008, “
Process Capability Surrogate Model Based Tolerance Synthesis of Multistation Manufacturing System
,”
IIE Trans.
0740-817X,
40
(
6
).
34.
Phoomboplab
,
T.
, and
Ceglarek
,
D.
, 2007, “
Design Synthesis Framework for Dimensional Management in Multistage Assembly System
,”
CIRP Ann.
0007-8506,
56
(
1
), pp.
153
158
.
35.
Kong
,
Z.
, and
Ceglarek
,
D.
, 2006, “
Fixture Workshop Synthesis for Reconfigurable Assembly Systems
,”
J. Manuf. Syst.
0278-6125,
25
(
1
), pp.
25
38
.
You do not currently have access to this content.