Variation source identification is an important task of quality assurance in multistage manufacturing processes (MMPs). However, existing approaches, including the quantitative engineering-model-based methods and the data-driven methods, provide limited capabilities in variation source identification. This paper proposes a new methodology that does not depend on accurate quantitative engineering models. Instead, engineering domain knowledge about the interactions between potential variation sources and product quality variables is represented as qualitative indicator vectors. These indicator vectors guide the rotation of the factor loading vectors that are derived from factor analysis of the multivariate measurement data. Based on this engineering-driven factor analysis, a procedure is presented to identify multiple variation sources that are present in a MMP. The effectiveness of the proposed methodology is demonstrated in a case study of a three-stage assembly process.

1.
Ferrell
,
W. G.
, and
Elmaghraby
,
S. E.
, 1990, “
Quality Assurance and Stage Dynamics in Multi-Stage Manufacturing, Part I
,”
Int. J. Prod. Res.
0020-7543,
28
(
5
), pp.
853
877
.
2.
Heikes
,
R. G.
, and
Montgomery
,
D. C.
, 1981, “
Productivity is Enhanced With Statistical Quality-Control
,”
Industrial Engineering
,
13
(
3
), pp.
52
55
.
3.
Montgomery
,
D. C.
, 2004,
Introduction to Statistical Quality Control
, 5th ed.,
Wiley
,
New York
.
4.
Shi
,
J.
, 2006,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC
,
Boca Raton, FL
, p.
469
.
5.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
756
762
.
6.
Mantripragada
,
R.
, and
Whitney
,
D. E.
, 1998, “
The Datum Flow Chain: A Systematic Approach to Assembly Design and Modeling
,”
Res. Eng. Des.
0934-9839 Theory Applications and Concurrent Engineering,
10
(
3
), pp.
150
165
.
7.
Mantripragada
,
R.
, and
Whitney
,
D. E.
, 1999, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
1
), pp.
124
140
.
8.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2002, “
Design Evaluation of Multi-Station Assembly Processes by Using State Space Approach
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
408
418
.
9.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
673
681
.
10.
Huang
,
Q.
,
Zhou
,
N.
, and
Shi
,
J.
, “
Stream of Variation Modeling and Diagnosis of Multi-Station Machining Processes
,”
ASME International Mechanical Engineering Congress and Exposition-MED
, 2000,
Orlando, FL
.
11.
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2001, “
Linear State Space Modeling of Dimensional Machining Errors
,”
Trans. NAMRI/SME
1047-3025,
29
, pp.
541
548
.
12.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
2
), pp.
296
309
.
13.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2002, “
Fault Diagnosis of Multistage Manufacturing Processes by Using State Space Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
313
322
.
14.
Zhou
,
S.
,
Chen
,
Y.
, and
Shi
,
J.
, 2004, “
Statistical Estimation and Testing for Variation Root-Cause Identification of Multistage Manufacturing Processes
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
1
(
1
), pp.
73
83
.
15.
Wolbrecht
,
E.
,
D'Ambrosio
,
B.
,
Paasch
,
R.
, and
Kirby
,
D.
, 2000, “
Monitoring and Diagnosis of a Multistage Manufacturing Process Using Bayesian Networks
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
14
(
1
), pp.
53
67
.
16.
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
Fixture Failure Diagnosis for Auto Body Assembly Using Pattern Recognition
,”
ASME J. Eng. Ind.
0022-0817,
118
, pp.
55
65
.
17.
Liu
,
J.
,
Li
,
J.
, and
Shi
,
J.
, 2005, “
Engineering Driven Cause-Effect Modeling and Statistical Analysis for Multi-Operational Machining Process Diagnosis
,”
Trans. NAMRI/SME
1047-3025,
33
, pp.
65
72
.
18.
Apley
,
D. W.
, and
Shi
,
J.
, 2001, “
A Factor-Analysis Method for Diagnosing Variability in Multivariate Manufacturing Processes
,”
Technometrics
0040-1706,
43
(
1
), pp.
84
95
.
19.
Apley
,
D. W.
, and
Lee
,
H. Y.
, 2003, “
Identifying Spatial Variation Patterns in Multivariate Manufacturing Processes: A Blind Separation Approach
,”
Technometrics
0040-1706,
45
(
3
), pp.
187
198
.
20.
Jin
,
N.
, and
Zhou
,
S.
, 2006, “
Signature Construction and Matching for Fault Diagnosis in Manufacturing Processes Through Fault Space Analysis
,”
IIE Trans., Qual. Reliab. Eng.
1545-8830,
38
, pp.
341
354
.
21.
Liu
,
Y. G.
, and
Hu
,
S. J.
, 2005, “
Assembly Fixture Fault Diagnosis Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
2
), pp.
358
368
.
22.
Camelio
,
J. A.
, and
Hu
,
S. J.
, 2004, “
Multiple Fault Diagnosis for Sheet Metal Fixtures Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
91
97
.
23.
Lawley
,
D. N.
, and
Maxwell
,
A. E.
, 1971,
Factor Analysis as a Statistical Method
Butterworths
,
London
.
24.
Darton
,
R. A.
, 1980, “
Rotation in Factor Analysis
,”
Statistician
0039-0526,
129
(
3
), pp.
167
194
.
25.
Li
,
Z.
,
Zhou
,
S.
, and
Ding
,
Y.
, 2007, “
Pattern Matching for Root Cause Identification of Manufacturing Processes With Consideration of General Structured Noise
,”
IIE Trans., Qual. Reliab. Eng.
1545-8830,
39
, pp.
251
263
.
You do not currently have access to this content.