Abstract

Variation propagation modeling has been proved to be an effective way for variation reduction and design synthesis in multi-operational manufacturing processes. However, previously developed approaches for machining processes did not directly model the process physics regarding how fixture, and datum, and machine tool errors generate the same pattern on part features. Consequently, it is difficult to distinguish error sources at each operation. This paper formulates the variation propagation model using the proposed equivalent fixture error concept. With this concept, datum error and machine tool error are transformed to equivalent fixture locator errors at each operation. As a result, error sources can be grouped and root cause identification can be conducted in a sequential manner. The case studies demonstrate the model validity through a real cutting experiment and model advantage in measurement reduction for root cause identification.

References

1.
Fadale
,
T. D.
,
Nenarokomov
,
A. V.
, and
Emery
,
A. F.
, 1995, “
Two Approaches to Optimal Sensor Locations
,”
ASME Trans. J. Heat Transfer
0022-1481,
117
, pp.
373
379
.
2.
Udwadia
,
F. E.
, 1994, “
Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems
,”
J. Eng. Mech.
0733-9399,
102
, pp.
368
390
.
3.
Wang
,
Y.
, and
Nagarkar
,
S. R.
, 1999, “
Locator and Sensor Placement for Automated Coordinate Checking Fixtures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
709
719
.
4.
Khan
,
A.
,
Ceglarek
,
D.
, and
Ni
,
J.
, 1998, “
Sensor Location Optimization for Fault Diagnosis in Multi-Fixture Assembly Systems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
781
792
.
5.
Ding
,
Y.
,
Kim
,
P.
,
Ceglarek
,
D.
, and
Jin
,
J.
, 2003, “
Optimal Sensor Distribution for Variation Diagnosis for Multi-Station Assembly Processes
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
, pp.
529
542
.
6.
Ding
,
Y.
,
Gupta
,
A.
, and
Apley
,
D. W.
, 2004, “
Singularity Issues in Fixture Fault Diagnosis for Multi-Station Assembly Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
200
210
.
7.
Lawless
,
J. F.
,
Mackay
,
R. J.
, and
Robinson
,
J. A.
, 1999, “
Analysis of Variation Transmission in Manufacturing Process-Part I
,”
J. Quality Technol.
0022-4065,
31
, pp.
131
142
.
8.
Lawless
,
J. F.
,
Mackay
,
R. J.
, and
Robinson
,
J. A.
, 1999, “
Analysis of Variation Transmission in Manufacturing Process-Part II
,”
J. Quality Technol.
0022-4065,
31
, pp.
143
154
.
9.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
756
762
.
10.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Modeling and Diagnosis of Multistage Manufacturing Processes: Part I: State Space Model
,”
Japan/USA Symposium on Flexible Automation
, Ann Arbor, MI, 23–26 July.
11.
Huang
,
Q.
,
Shi
,
J.
, and
Yuan
,
J.
, 2003, “
Part Dimensional Error and Its Propagation Modeling in Multi-Operational Machining Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
255
262
.
Also appeared in
Proc. 2000 ASME Int. Mech. Eng. Congress and Exposition
, 5–10 November, Orlando, FL, MED- Vol.
11
, pp.
81
88
.
12.
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2001, “
Linear State Space Modeling of Dimensional Machining Errors
,”
Trans. NAMRC/SME
1047-3025,
XXIX
, pp.
541
548
.
13.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
, pp.
296
309
.
14.
Huang
,
Q.
, and
Shi
,
J.
, 2004, “
Stream of Variation Modeling and Analysis of Serial-Parallel Multistage Manufacturing Systems
,”
(in press).
15.
Mantripragada
,
R.
, and
Whitney
,
D.
, 1999, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
, pp.
124
140
.
16.
Zhou
,
S.
,
Yu
,
D.
,
Chen
,
Y.
, and
Shi
,
J.
, 2003, “
Diagnosability Study of Multistage Manufacturing Process Based on Linear Mixed-Effects Models
,”
Technometrics
0040-1706,
45
, pp.
312
325
.
17.
Huang
,
Q.
, and
Shi
,
J.
, 2004, “
Variation Transmission Analysis and Diagnosis of Multi-Operational Machining Processes
,”
IIE Trans., Qual. Reliab. Eng.
1545-8830,
36
, pp.
807
815
.
18.
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
Simultaneous Tolerance Synthesis through Variation Propagation Modeling of Multistage Manufacturing Processes
,”
Trans. NAMRC/SME
1047-3025,
XXXI
, pp.
515
522
.
19.
Martinsen
,
K.
, 1993, “
Vectorial Tolerancing for All Types of Surfaces
,”
ASME Conferences, Adv. Des. Autom.
,
2
, pp.
187
198
.
20.
Cai
,
W.
,
Hu
,
S.
, and
Yuan
,
J.
, 1996, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpiece
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
21.
Chen
,
J. S.
,
Yuan
,
J. X.
,
Ni
,
J.
, and
Wu.
,
S. M.
, 1993, “
Real-Time Compensation for Time-Variant Volumetric Errors on a Machining Center
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
472
479
.
You do not currently have access to this content.