The main objective of this paper is to investigate the quality and integrity of the surface produced during high speed hard machining (HSHM) of D2 tool steel in its hardened state (60–62 HRc). Polycrystalline Cubic Boron Nitride (PCBN) tools are used in this study. The results obtained from the micro-graphical analysis of the surface produced are presented in Part 1 of this paper. In Part 2 micro-hardness and residual stress analyses are presented. Microhardness measurements are conducted beneath the machined surface. X-ray diffraction analysis is performed to obtain the residual stress distribution beneath the surface. Analytically, a 3-D thermo-elasto-plastic finite element model is developed to predict the residual stresses induced in the workpiece surface. In the model the cutting zone is specified based on the tool condition (i.e., sharp or worn). The finite element analysis demonstrates the significant effect of the heat generated during cutting on the residual stress distribution. The results illustrate the possibility of minimizing the high tensile residual stresses produced in the workpiece surface, by selecting the appropriate depth of cut. A good correlation between the analytical and predicted residual stress is obtained. [S1087-1357(00)00804-2]

1.
Field, M., Koster, W. P., Kohls, J. B., Snider, R. E., and Maranchic, J., 1970, “Machining of High Strength Steels With Emphasis on Surface Integrity,” Technical Report AFML-TR-70-11, Air Force Material Laboratory, MATF, Wright-Patterson Air Force Base, Ohio, U.S.A.
2.
Bailey
,
J. A.
,
Jeelani
,
S.
, and
Becker
,
S. E.
,
1976
, “
Surface Integrity in Machining AISI 4340 Steel
,”
Trans. ASME, J. Eng. Ind.
,
98
, No.
3
, pp.
999
1006
.
3.
Kono, Y., Hara, A., Yazu, S., Uchida, T., and Mori, Y., 1980, “Cutting Performance of Sintered CBN Tools,” Cutting Tool Materials, Proceedings of the International Conference, American Society for Metals, Ft. Mitchell, Kentucky, September 15–17, pp. 281–295.
4.
Matsumoto
,
Y.
,
Barash
,
M. M.
, and
Liu
,
C. R.
,
1986
, “
Effect of Hardness on the Surface Integrity of AISI 4340 Steel
,”
Trans. ASME, J. Eng. Ind.
,
108
, No.
3
, pp.
169
175
.
5.
Schreiber, E., and Schlicht, H., 1986, “Residual Stresses After Turning of Hardened Components,” The International Conference on Residual Stresses, Garnish-Partenkirchen (FRG), pp. 853–860.
6.
Ogata, M., 1989, “Einsatz von PCBN-Werkzeugen in der Produktion,” VDI Berichte, No. 762, pp. 271–279.
7.
Wu
,
D. W.
, and
Matsumoto
,
Y.
,
1990
, “
The Effect of Hardness on Residual Stresses in Orthogonal Machining of AISI 4340 Steel
,”
Trans. ASME, J. Eng. Ind.
,
112
, No.
3
, pp.
245
252
.
8.
Ko¨nig
,
W.
,
Komanduri
,
R.
,
To¨nshoff
,
H. K.
, and
Ackershott
,
G.
,
1990
, “
Machining of Hard Materials
,”
Ann. CIRP
,
39
, No.
1
, pp.
417
427
.
9.
Ko¨nig
,
W.
,
Berktold
,
A.
, and
Koch
,
K. F.
,
1993
, “
Turning Versus Grinding-A Comparison of Surface Integrity Aspects and Attainable Accuracies
,”
Ann. CIRP
,
42
, No.
1
, pp.
39
43
.
10.
Abra´o, A. M., Wise, M. L. H., and Aspinwall, D. K., 1995, “Tool Life and Workpiece Surface Integrity Evaluations When Machining Hardened AISI H13 and AISI E52100 Steels With Conventional Ceramic and PCBN Tool Materials,” NAMRC XXIII Conference, May 24–26, Houghton, Michigan, MR95-195.
11.
To¨nshoff
,
H. K.
,
Wobker
,
H. G.
, and
Brandt
,
D.
,
1995
, “
Tribological Aspects of Hard Turning with Ceramic Tools
,”
J. Soc. Tribol. Lubr. Eng.
,
51
, No.
2
, pp.
163
168
.
12.
To¨nshoff
,
H. K.
,
Wobker
,
H. G.
, and
Brandt
,
D.
,
1995
, “
Hard Turning-Influences on the Workpiece Properties
,”
Trans. NAMRI/SME
,
XXIII
, pp.
215
220
.
13.
Abra´o
,
A. M.
, and
Aspinwall
,
D. K.
,
1996
, “
The Surface Integrity of Turned and Ground Hardned Bearing Steel
,”
Wear
196
, pp.
279
284
.
14.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1982
, “
Variables Governing Patterns of Mechanical Residual Stress in a Machined Surface
,”
Trans. ASME, J. Eng. Ind.
,
104
, No.
3
, pp.
257
264
.
15.
Kishawy, H. A., and Elbestawi, M. A., 1998, “Effects of Edge Preparation and Cutting Speed on Surface Integrity of Die Materials in Hard Machining,” Proc. of Int. Mech. Eng. Congress and Exposition, MED-Vol. 8, pp. 269–276.
16.
Okushima
,
K.
, and
Kakino
,
Y.
,
1971
, “
The Residual Stress Produced by Metal Cutting
,”
Ann. CIRP
,
10
, No.
1
, pp.
13
14
.
17.
El-Khabeery
,
M. M.
, and
Fattouh
,
M.
,
1989
, “
Residual Stress Distribution Caused by Milling
,”
Int. J. Mach. Tools Manuf.
,
29
, No.
3
, pp.
391
401
.
18.
Yang, G., Tite, C. N. J., Smith, G. T., Hope, A. D., and Noroozi, S., 1995, “Determination of Residual Stresses Induced by hardened Steel Turning Using Finite Element Methods,” DE-Vol. 83, 1995 Design Engineering Technical Conferences, Vol. 2, ASME 1995, pp. 205–211.
19.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
, No.
24
, pp.
623
638
.
20.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
Trans. ASME, J. Appl. Mech.
,
73
, pp.
404
413
.
21.
Shaw, M. C., 1984, Metal Cutting Principles, Oxford Science, New York.
22.
Barash, M. M., and Schoech, W. J., 1970, “A Semi-Analytical Model of the Residual Stress Zone in Orthogonal Machining,” Proc. 11th International M.T.D.R. Conf., London, Pergamon Press.
23.
Lajczok, M. R., 1980, “A Study of Some Aspects of Metal Machining Using the Finite Element Method,” Ph.D. dissertation, North Carolina State University.
24.
Natarajan
,
R.
, and
Jeelani
,
S.
,
1983
, “
Residual Stresses in Machining Using Finite Element Method
,”
Comput. Eng. Comput. Software Appl.
,
3, ASME, New York
, pp.
19
20
.
25.
Wang, B. P., Sadat, A. B., and Twu, M. J., 1988, “Finite Element Simulation of Orthogonal Cutting-A Survey,” in Kiefer, B. V., et al., eds, Materials in Manufacturing Processes, ASME Winter Annual Meeting, Chicago, IL, November 27–December 2.
26.
Liu
,
C. R.
, and
Lin
,
Z. C.
,
1985
, “
Effects of Shear Plane Boundary Condition on Stress Loading in Orthogonal Machining
,”
Int. J. Mech. Sci.
,
27
, No.
5
, pp.
281
290
.
27.
Mishra
,
A.
, and
Prasad
,
T.
,
1985
, “
Residual Stresses Due to A Moving Heat Source
,”
Int. J. Mech. Sci.
,
27
, No.
9
, pp.
571
581
.
28.
Lin
,
Z. C.
,
Lin
,
Y. Y.
, and
Liu
,
C. R.
,
1991
, “
Effect of Thermal Load and Mechanical Load on the Residual Stress of a Machined Workpiece
,”
Int. J. Mech. Sci.
,
33
, No.
4
, pp.
263
278
.
29.
Shih
,
A. J.
, and
Yang
,
H. T. Y.
,
1993
, “
Experimental and Finite Element Predictions of Residual Stresses due to Orthogonal Metal Cutting
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1487
1507
.
30.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
Trans. ASME, J. Eng. Ind.
,
117
, No.
1
, pp.
84
91
.
31.
Subhas, B. K., Bhat, R., Balakrishna, H. K., and Ramachandra, 1998, “Dimensional Instability Studies in Machining of Inconel 718 Nickel Based Superalloys as Applied to Aerogas Turbine Components,” Int. Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden, June 2–5, 1998.
32.
Turbat, A, Convert, F., and Skalli, N., 1983, “Prediction of Thermal Residual Stresses by the Finite Element method-Effect of a Phase Change, Numerical Methods in Thermal Problems, Proceedings of the Third International Conference, pp. 292–301.
33.
Jeelani
,
S.
, and
Bailey
,
J. A.
,
1986
, “
Residual Stress Distribution in Machining Annealed 18 percent Nickel Maraging Steel
,”
J. Eng. Mater. Technol.
,
108
, pp.
93
98
.
34.
Flower, E. C., MacEwan, S. R., and Holden, J. H., 1987, “FEA Predictions of Residual Stress in Stainless Steel Compared to Neutron and x-ray Diffraction Measurements,” The 2nd International Conference on Advances in Numerical Methods in Engineering: Theory and Application, Swansea, Walels, U.K., July 6–10, 1987.
35.
Wiesner
,
C.
,
1992
, “
Residual Stresses After Orthogonal Machining of AISI 304: Numerical Calculation of the Thermal Component and Comparison with Experimental Results
,”
Metall. Trans. A
,
23
, pp.
989
996
.
36.
Hsu, H. C., 1992, “An Elasto-Viscoplastic Finite Element Model of Orthogonal Metal Cutting for Residual Stress Prediction,” Ph.D. thesis, North Carolina State University, 1992.
37.
Shirakashi, T., Obikawa, T., Sasahara, H., and Wada, T., 1993, “Analytical Prediction of the Characteristics Within Machined Surface Layer (1st Report) The Analysis of the Residual Stress Distribution Within Machined Surface layer with FEM Simulation,” Seimitsu Kogaku, Kaish/J. Jpn. Soc. Precis. Eng., 59, No. 10, pp. 1695–1700.
38.
Shirakashi
,
T.
,
Shsahara
,
H.
,
Obikawa
,
T.
, and
Wada
,
T.
,
1994
, “
The Analytical Prediction of Residual Stress Within Machined Sublayer and Its Effect on Accuracy
,”
Int. J. Jpn. Soc. Precis. Eng.
,
28
, No.
3
, pp.
200
205
.
39.
Sasahara
,
H.
,
Obikawa
,
T.
, and
Shirakashi
,
T.
,
1996
, “
FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer
,”
J. Mater. Process. Technol.
,
62
, pp.
448
453
.
40.
Zhang
,
B.
, and
Bagchi
,
A.
,
1994
, “
Finite Element Simulation of Chip Formation and Comparison with Machining Experiment
,”
Trans. ASME, J. Eng. Ind.
,
116
, No.
3
, pp.
289
297
.
41.
Shih, A. J., 1993, “Finite Element Analysis of the Rake Angle Effects in Orthogonal Metal Cutting,” PED-Vol. 64, Manufacturing Science and Engineering, ASME Winter Annual Meeting, pp. 475–483.
42.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy-Finite Element Modeling and a Few Results
,”
Trans. ASME, J. Eng. Ind.
,
118
, No.
2
, pp.
208
215
.
43.
Maekawa
,
K.
,
Nakano
,
Y.
, and
Kitagawa
,
T.
,
1996
, “
Finite Element Analysis of Thermal Behavior in Metal Machining, 1st Report, Influence of Thermophysical Properties on Cutting Temperature
,”
Trans. Jpn. Soc. Mech. Eng.
,
62
, No. 596, C, pp.
857
863
.
44.
Trent, E. M., 1991, Metal Cutting, 3rd ed., Butterworth-Heinemann.
45.
Tlusty
,
J.
, and
Masood
,
Z.
,
1978
, “
Chipping and Breakage of Carbide Tools
,”
Trans. ASME, J. Eng. Ind.
,
100
, No.
4
, pp.
403
412
.
46.
Elbestawi
,
M. A.
,
Srivastava
,
A. K.
, and
El-Wardany
,
T.
,
1996
, “
A Model for Chip Formation During Machining of Hardened Steel
,”
Ann. CIRP
,
45
, No.
1
, pp.
71
76
.
47.
Mills, A. F., 1992, Heat Transfer, Irwin, Boston, pp. 330–331.
You do not currently have access to this content.