Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Potential field-based collision avoidance algorithms for mobile robots frequently assume vehicles and obstacles to have circular or spherical shapes. This assumption not only simplifies the analysis but also limits the mobility of agents in confined spaces, particularly for vehicles with elongated or irregular shapes. To increase mobility, this letter presents a decentralized collision avoidance framework for nonholonomic systems of unicycle type that considers the non-circular shape and relative orientation of vehicles and obstacles. The framework builds on the concepts of potential field and avoidance functions. However, it proposes using a non-constant minimum safe distance radius that changes based on the shape, relative position, and relative orientation of agents. The control framework is proven to guarantee collision avoidance at all times and is shown, via simulation, to increase the ability of agents to navigate through narrow spaces safely.

References

1.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1998
, “
Motion Planning in Dynamic Environments Using Velocity Obstacles
,”
Int. J. Rob. Res.
,
17
(
7
), pp.
760
772
.
2.
van den Berg
,
J.
,
Snape
,
J.
,
Guy
,
S. J.
, and
Manocha
,
D.
,
2011
, “
Reciprocal Collision Avoidance With Acceleration-Velocity Obstacles
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
3475
3482
.
3.
Guo
,
K.
,
Wang
,
D.
,
Fan
,
T.
, and
Pan
,
J.
,
2021
, “
VR-ORCA: Variable Responsibility Optimal Reciprocal Collision Avoidance
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
4520
4527
.
4.
Chakravarthy
,
A.
, and
Ghose
,
D.
,
1998
, “
Obstacle Avoidance in a Dynamic Environment: A Collision Cone Approach
,”
IEEE Trans. Syst. Man Cybern. A Syst. Humans
,
28
(
5
), pp.
562
574
.
5.
Haraldsen
,
A.
,
Wiig
,
M. S.
, and
Pettersen
,
K. Y.
,
2023
, “
Dynamic Obstacle Avoidance for Nonholonomic Vehicles Using Collision Cones: Theory and Experiments
,”
Proceedings of IEEE Conference on Control Technology and Applications
,
Bridgetown, Barbados
,
Aug. 16–18
, pp.
46
52
.
6.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.
7.
Stipanović
,
D. M.
,
Hokayem
,
P. F.
,
Spong
,
M. W.
, and
Šiljak
,
D.
,
2007
, “
Cooperative Avoidance Control for Multiagent Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
5
), pp.
699
707
.
8.
Mastellone
,
S.
,
Stipanović
,
D. M.
,
Graunke
,
C. R.
,
Intlekofer
,
K. A.
, and
Spong
,
M. W.
,
2008
, “
Formation Control and Collision Avoidance for Multi-agent Non-holonomic Systems: Theory and Experiments
,”
Int. J. Rob. Res.
,
27
(
1
), pp.
107
126
.
9.
Zhang
,
W.
,
Rodríguez-Seda
,
E. J.
,
Deka
,
S.
,
Amrouche
,
M.
,
Zhou
,
D.
,
Stipanovic
,
D.
, and
Leitmann
,
G.
,
2029
, “
Avoidance Control With Relative Velocity Information for Lagrangian Dynamics
,”
J. Intell. Rob. Syst.
,
99
, pp.
229
244
.
10.
Glotfelter
,
P.
,
Cortés
,
J.
, and
Egerstedt
,
M.
,
2017
, “
Nonsmooth Barrier Functions With Applications to Multi-robot Systems
,”
IEEE Contr. Syst. Lett.
,
1
(
2
), pp.
310
315
.
11.
Chen
,
Y.
,
Singletary
,
A.
, and
Ames
,
A. D.
,
2021
, “
Guaranteed Obstacle Avoidance for Multi-Robot Operations With Limited Actuation: A Control Barrier Function Approach
,”
IEEE Control Syst. Lett.
,
5
(
1
), pp.
127
132
.
12.
Rodríguez-Seda
,
E. J.
,
Tang
,
C.
,
Spong
,
M. W.
, and
Stipanović
,
D. M.
,
2014
, “
Trajectory Tracking With Collision Avoidance for Nonholonomic Vehicles With Acceleration Constraints and Limited Sensing
,”
Int. J. Rob. Res.
,
33
(
12
), pp.
1569
1592
.
13.
Huang
,
S.
,
Teo
,
R. S. H.
, and
Tan
,
K. K.
,
2019
, “
Collision Avoidance of Multi Unmanned Aerial Vehicles: A Review
,”
Annu. Rev. Control
,
48
, pp.
147
164
.
14.
Tang
,
J.
,
Lao
,
S.
, and
Wan
,
Y.
,
2022
, “
Systematic Review of Collision-Avoidance Approaches for Unmanned Aerial Vehicles
,”
IEEE Syst. J.
,
16
(
3
), pp.
4356
4367
.
15.
Sunkara
,
V.
,
Chakravarthy
,
A.
, and
Ghose
,
D.
,
2019
, “
Collision Avoidance of Arbitrarily Shaped Deforming Objects Using Collision Cones
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
2156
2163
.
16.
Minguez
,
J.
, and
Montano
,
L.
,
2009
, “
Extending Collision Avoidance Methods to Consider the Vehicle Shape, Kinematics, and Dynamics of a Mobile Robot
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
367
381
.
17.
Borenstein
,
J.
,
1994
, “
Real-Time Obstacle Avoidance for Non-point Mobile Robots
,”
Proceedings of World Conference on Robotics Research
,
Pittsburgh, PA
,
Sept. 17–19, 1991
.
18.
Wu
,
Z.
,
Hu
,
G.
,
Feng
,
L.
,
Wu
,
J.
, and
Liu
,
S.
,
2016
, “
Collision Avoidance for Mobile Robots Based on Artificial Potential Field and Obstacle Envelope Modelling
,”
Assembly Autom.
,
36
(
3
), pp.
318
332
.
19.
Braquet
,
M.
, and
Bakolas
,
E.
,
2022
, “
Vector Field-Based Collision Avoidance for Moving Obstacles With Time-Varying Elliptical Shape
,”
Proceedings of Modeling, Estimation, and Control Conference
,
Jersey City, NJ
,
Oct. 2–5
, pp.
587
592
.
20.
Xie
,
H.
,
Patel
,
R.
,
Kalaycioglu
,
S.
, and
Asmer
,
H.
,
1998
, “
Real-Time Collision Avoidance for a Redundant Manipulator in an Unstructured Environment
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Victoria, BC, Canada
,
Oct. 17
, Vol.
3
, pp.
1925
1930
.
21.
Zimmermann
,
S.
,
Busenhart
,
M.
,
Huber
,
S.
,
Poranne
,
R.
, and
Coros
,
S.
,
2022
, “
Differentiable Collision Avoidance Using Collision Primitives
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Kyoto, Japan
,
Oct. 23–27
, p.
8086
8093
.
22.
Zhang
,
X.
,
Liniger
,
A.
, and
Borrelli
,
F.
,
2021
, “
Optimization-Based Collision Avoidance
,”
IEEE Trans. Control Syst. Technol.
,
29
(
3
), pp.
972
983
.
23.
Hu
,
Y.
,
Fu
,
J.
, and
Wen
,
G.
,
2023
, “
Decentralized Robust Collision-Avoidance for Cooperative Multirobot Systems: A Gaussian Process-Based Control Barrier Function Approach
,”
IEEE Trans. Control Network Syst.
,
10
(
2
), pp.
706
717
.
24.
Brockett
,
R. W.
,
1983
, “
Asymptotic Stability and Feedback Stabilization
,”
Differential Geometric Control Theory
,
R. W.
Brockett
,
R. S.
Millman
, and
H. J.
Sussmann
, eds.,
Birkhauser
,
Boston, MA
, pp.
181
191
.
25.
Sarkar
,
N.
,
Yun
,
X.
, and
Kumar
,
V.
,
1994
, “
Control of Mechanical Systems With Rolling Constraints: Application to Dynamic Control of Mobile Robots
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
55
69
.
26.
Rodríguez-Seda
,
E. J.
, and
Stipanović
,
D. M.
,
2020
, “
Cooperative Avoidance Control With Velocity-Based Detection Regions
,”
IEEE Control Syst. Lett.
,
4
(
2
), pp.
432
437
.
27.
Rodríguez-Seda
,
E. J.
,
2024
, “
Decentralized Low-Energy Avoidance Control Framework for Multiple Mobile Agents Using Irregular Observations
,”
IEEE Trans. Control Syst. Technol.
,
32
(
5
), pp.
1027
1039
.
28.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Rodríguez-Seda
,
E. J.
, and
Stipanović
,
D. M.
,
2013
, “
Guaranteed Collision Avoidance With Discrete Observations and Limited Actuation
,”
Advances in Intelligent Vehicles
,
Y.
Chen
, and
L.
Li
, eds.,
Intelligent Systems, Academic Press
,
Boston, MA
, pp.
89
110
.
30.
Stipanović
,
D. M.
,
Tomlin
,
C. J.
, and
Leitmann
,
G.
,
2012
, “
Monotone Approximations of Minimum and Maximum Functions and Multi-Objective Problems
,”
Appl. Math. Optim.
,
66
(
3
), pp.
455
473
.
You do not currently have access to this content.