Abstract

The primary aim of this research paper is to enhance the effectiveness of a two-level infrastructure-based control framework utilized for traffic management in expansive networks. The lower-level controller adjusts vehicle velocities to achieve the desired density determined by the upper-level controller. The upper-level controller employs a novel Lyapunov-based switched Newton extremum seeking control approach to ascertain the optimal vehicle density in congested cells where downstream bottlenecks are unknown, even in the presence of disturbances in the model. Unlike gradient-based approaches, the Newton algorithm eliminates the need for the unknown Hessian matrix, allowing for user-assignable convergence rates. The Lyapunov-based switched approach also ensures asymptotic convergence to the optimal set point. Simulation results demonstrate that the proposed approach, combining Newton’s method with user-assignable convergence rates and a Lyapunov-based switch, outperforms gradient-based extremum seeking in the hierarchical control framework.

References

1.
Markantonakis
,
V.
,
Skoufoulas
,
D. I.
,
Papamichail
,
I.
, and
Papageorgiou
,
M.
,
2019
, “
Integrated Traffic Control for Freeways Using Variable Speed Limits and Lane Change Control Actions
,”
Transp. Res. Record
,
2673
(
9
), pp.
602
613
.
2.
Mehr
,
N.
, and
Horowitz
,
R.
,
2019
, “
How Will the Presence of Autonomous Vehicles Affect the Equilibrium State of Traffic Networks
?”
IEEE Trans. Contr. Netw. Syst.
,
7
(
1
), pp.
96
105
.
3.
Li
,
D.
, and
Hou
,
Z.
,
2020
, “
Perimeter Control of Urban Traffic Networks Based on Model-Free Adaptive Control
,”
IEEE Trans. Intell. Transp. Syst.
,
22
(
10
), pp.
6460
6472
.
4.
Hoagg
,
J. B.
, and
Seigler
,
T. M.
,
2013
, “
Filtered-Dynamic-Inversion Control for Unknown Minimum-Phase Systems With Unknown-and-Unmeasured Disturbances
,”
Int. J. Contr.
,
86
(
3
), pp.
449
468
.
5.
Ghasemi
,
A. H.
,
2017
, “
Slewing and Vibration Control of a Single-Link Flexible Manipulator Using Filtered Feedback Linearization
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
2887
2895
.
6.
Shahri
,
P. K.
, and
Ghasemi
,
A. H.
,
2022
, “
Heterogeneous Traffic Management Using METANET Model With Filtered Feedback Linearization Control Approach
,” Technical Report, SAE Technical Paper.
7.
Shahri
,
P. K.
,
HomChaudhuri
,
B.
,
Pulugurtha
,
S. S.
,
Mesbah
,
A.
, and
Ghasemi
,
A. H.
,
2022
, “
Traffic Congestion Control Using Distributed Extremum Seeking and Filtered Feedback Linearization Control Approaches
,”
IEEE Control Syst. Lett.
,
7
, pp.
1003
1008
.
8.
Krstić
,
M.
, and
Wang
,
H.
,
2000
, “
Stability of Extremum Seeking Feedback for General Nonlinear Dynamic Systems
,”
Automatica
,
36
(
4
), pp.
595
601
.
9.
Ghaffari
,
A.
,
Krstić
,
M.
, and
Nešić
,
D.
,
2012
, “
Multivariable Newton-Based Extremum Seeking
,”
Automatica
,
48
(
8
), pp.
1759
1767
.
10.
Bafandeh
,
A.
, and
Vermillion
,
C.
,
2016
, “
Altitude Optimization of Airborne Wind Energy Systems Via Switched Extremum Seeking–Design, Analysis, and Economic Assessment
,”
IEEE Trans. Control Syst. Technol.
,
25
(
6
), pp.
2022
2033
.
11.
Wang
,
Y.
,
Yu
,
X.
,
Guo
,
J.
,
Papamichail
,
I.
,
Papageorgiou
,
M.
,
Zhang
,
L.
,
Hu
,
S.
,
Li
,
Y.
, and
Sun
,
J.
,
2022
, “
Macroscopic Traffic Flow Modelling of Large-Scale Freeway Networks With Field Data Verification: State-of-the-Art Review, Benchmarking Framework, and Case Studies Using Metanet
,”
Transp. Res. Part C: Emerg. Technol.
,
145
, p.
103904
.
12.
Daganzo
,
C. F.
, and
Geroliminis
,
N.
,
2008
, “
An Analytical Approximation for the Macroscopic Fundamental Diagram of Urban Traffic
,”
Transp. Res. Part B: Methodol.
,
42
(
9
), pp.
771
781
.
13.
Muñoz
,
L.
,
Sun
,
X.
,
Horowitz
,
R.
, and
Alvarez
,
L.
,
2003
, “
Traffic Density Estimation With the Cell Transmission Model
,”
Proceedings of the 2003 American Control Conference
,
Denver, CO
,
June 4–6
, Vol. 5, IEEE, pp.
3750
3755
.
You do not currently have access to this content.