Abstract

Accurate estimation of the state of charge (SOC) is crucial for ensuring the safe and efficient operation of lithium-ion batteries. Machine learning (ML) models may achieve high SOC estimation accuracy, but typically require large training datasets that may not always be accessible in practical applications. To address this issue, this work proposes a hybrid model consisting of a transformer neural network and a single particle model with electrolyte dynamics (SPMe) for SOC estimation in limited data scenarios. The transformer can leverage the internal battery states estimated by the SPMe when necessary and learn to use information from multiple sources (i.e., experimental data and SPMe). Two limited data scenarios, partially available cycles and varying temperatures, are evaluated with experimental battery discharge cycles to identify the conditions under which the proposed model outperforms traditional ML models. Despite being highly dependent on the SPMe’s performance, the hybrid model demonstrated improved SOC estimation over the baseline models, with less than 2% error for most scenarios.

References

1.
Shen
,
H.
,
Zhou
,
X.
,
Ahn
,
H.
,
Lamantia
,
M.
,
Chen
,
P.
, and
Wang
,
J.
,
2023
, “
Personalized Velocity and Energy Prediction for Electric Vehicles With Road Features in Consideration
,”
IEEE Trans. Transp. Electrif.
,
9
(
3
), pp.
3958
3969
.
2.
How
,
D. N.
,
Hannan
,
M.
,
Lipu
,
M. H.
, and
Ker
,
P. J.
,
2019
, “
State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review
,”
IEEE Access
,
7
, p.
136116
.
3.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), p.
1526
.
4.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
,
Ahmed
,
R.
, and
Emadi
,
A.
,
2017
, “
Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6730
6739
.
5.
Chaoui
,
H.
, and
Ibe-Ekeocha
,
C. C.
,
2017
, “
State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8773
8783
.
6.
Yang
,
F.
,
Li
,
W.
,
Li
,
C.
, and
Miao
,
Q.
,
2019
, “
State-of-Charge Estimation of Lithium-Ion Batteries Based on Gated Recurrent Neural Network
,”
Energy
,
175
, pp.
66
75
.
7.
Yang
,
F.
,
Zhang
,
S.
,
Li
,
W.
, and
Miao
,
Q.
,
2020
, “
State-of-Charge Estimation of Lithium-Ion Batteries Using LSTM and UKF
,”
Energy
,
201
, p.
117664
.
8.
Tian
,
Y.
,
Lai
,
R.
,
Li
,
X.
,
Xiang
,
L.
, and
Tian
,
J.
,
2020
, “
A Combined Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network and an Adaptive Cubature Kalman Filter
,”
Appl. Energy
,
265
, p.
114789
.
9.
Shen
,
H.
,
Zhou
,
X.
,
Wang
,
Z.
, and
Wang
,
J.
,
2022
, “
State of Charge Estimation for Lithium-Ion Battery Using Transformer With Immersion and Invariance Adaptive Observer
,”
J. Energy Storage
,
45
, p.
103768
.
10.
Astolfi
,
A.
, and
Ortega
,
R.
,
2003
, “
Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems
,”
IEEE Trans. Automat. Contr.
,
48
(
4
), pp.
590
606
.
11.
Shaju
,
K.
,
Rao
,
G. S.
, and
Chowdari
,
B.
,
2004
, “
Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li (ni1/3co1/3mn1/3) O2
,”
J. Electrochem. Soc.
,
151
(
9
), p.
A1324
.
12.
Prada
,
E.
,
Di Domenico
,
D.
,
Creff
,
Y.
,
Bernard
,
J.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2012
, “
Simplified Electrochemical and Thermal Model of Lifepo4-Graphite Li-Ion Batteries for Fast Charge Applications
,”
J. Electrochem. Soc.
,
159
(
9
), p.
A1508
.
13.
Safari
,
M.
, and
Delacourt
,
C.
,
2011
, “
Modeling of a Commercial Graphite/lifepo4 Cell
,”
J. Electrochem. Soc.
,
158
(
5
), p.
A562
.
14.
Tu
,
H.
,
Moura
,
S.
, and
Fang
,
H.
,
2021
, “
Integrating Electrochemical Modeling With Machine Learning for Lithium-Ion Batteries
,”
2021 American Control Conference (ACC)
,
Online
,
May 25–28
, IEEE, pp.
4401
4407
.
15.
Park
,
S.
,
Zhang
,
D.
, and
Moura
,
S.
,
2017
, “
Hybrid Electrochemical Modeling With Recurrent Neural Networks for Li-Ion Batteries
,”
2017 American Control Conference (ACC)
,
Seattle, WA
,
May 24–26
, IEEE, pp.
3777
3782
.
16.
He
,
W.
,
Williard
,
N.
,
Chen
,
C.
, and
Pecht
,
M.
,
2014
, “
State of Charge Estimation for Li-Ion Batteries Using Neural Network Modeling and Unscented Kalman Filter-Based Error Cancellation
,”
Int. J. Electr. Power Energy Syst.
,
62
, pp.
783
791
.
17.
Pang
,
H.
,
Mou
,
L.
,
Guo
,
L.
, and
Zhang
,
F.
,
2019
, “
Parameter Identification and Systematic Validation of an Enhanced Single-Particle Model With Aging Degradation Physics for Li-ion Batteries
,”
Electrochim. Acta
,
307
, pp.
474
487
.
18.
Fan
,
G.
,
2020
, “
Systematic Parameter Identification of a Control-Oriented Electrochemical Battery Model and Its Application for State of Charge Estimation at Various Operating Conditions
,”
J. Power Sources
,
470
, p.
228153
.
19.
Li
,
W.
,
Demir
,
I.
,
Cao
,
D.
,
Jöst
,
D.
,
Ringbeck
,
F.
,
Junker
,
M.
, and
Sauer
,
D. U.
,
2022
, “
Data-Driven Systematic Parameter Identification of an Electrochemical Model for Lithium-Ion Batteries With Artificial Intelligence
,”
Energy Storage Mater.
,
44
, pp.
557
570
.
You do not currently have access to this content.