Abstract

Ground vehicles operate under different driving conditions, which require the analysis of varying parameter values. It is essential to ensure the vehicle’s safe operation under all these conditions of the parameter variation. In this paper, we investigate the safe operating limits of a ground vehicle by performing the reachability analysis for varying parameters using the Koopman spectrum approach. The reachable set is computed using the Koopman principal eigenfunctions obtained from a convex optimization formulation for different values of the parameter. We consider the two degrees-of-freedom nonlinear quarter-car model to simulate the vehicle’s dynamics. Based on the obtained reachable sets, we provide the mean and variance computation framework with parametric uncertainty. The results show that the reachable set for each value provides valuable information regarding the safe operating limits of the vehicle and can assist in developing safe driving strategies.

References

1.
Yazici
,
H.
, and
Sever
,
M.
,
2018
, “
L2 Gain State Derivative Feedback Control of Uncertain Vehicle Suspension Systems
,”
J. Vib. Contr.
,
24
(
16
), pp.
3779
3794
.
2.
Althoff
,
M.
, and
Dolan
,
J. M.
,
2014
, “
Online Verification of Automated Road Vehicles Using Reachability Analysis
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
903
918
.
3.
Kurzhanskiy
,
A. A.
, and
Varaiya
,
P.
,
2007
, “
Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems
,”
IEEE Trans. Automat. Contr.
,
52
(
1
), pp.
26
38
.
4.
Alanwar
,
A.
,
Koch
,
A.
,
Allgöwer
,
F.
, and
Johansson
,
K. H.
,
2021
, “
Data-Driven Reachability Analysis Using Matrix Zonotopes
,”
Learning for Dynamics and Control
,
ETH Zurich, Switzerland (Virtual)
,
June 7–8
,
PMLR
, pp.
163
175
.
5.
Bansal
,
S.
,
Chen
,
M.
,
Herbert
,
S.
, and
Tomlin
,
C. J.
,
2017
, “
Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances
,”
2017 IEEE 56th Annual Conference on Decision and Control (CDC)
,
Melbourne, Australia
,
Dec. 12–15
,
IEEE
, pp.
2242
2253
.
6.
Umathe
,
B.
,
Tellez-Castro
,
D.
, and
Vaidya
,
U.
,
2023
, “
Reachability Analysis Using Spectrum of Koopman Operator
,”
IEEE Contr. Syst. Lett.
,
7
, pp.
595
600
.
7.
Mauroy
,
A.
,
Susuki
,
Y.
, and
Mezić
,
I.
,
2020
,
Koopman Operator in Systems and Control
,
Springer International Publishing
,
Berlin, Germany
.
8.
Xiao
,
Y.
,
Zhang
,
X.
,
Xu
,
X.
,
Liu
,
X.
, and
Liu
,
J.
,
2022
, “
Deep Neural Networks With Koopman Operators for Modeling and Control of Autonomous Vehicles
,”
IEEE Trans. Intell. Vehicl.
,
8
(
1
), pp.
135
146
.
9.
Matavalam
,
A. R. R.
,
Vaidya
,
U.
, and
Ajjarapu
,
V.
,
2022
, “
Propagating Uncertainty in Power System Initial Conditions Using Data-Driven Linear Operators
,”
IEEE Trans. Power Syst.
,
37
(
5
), pp.
4125
4128
.
10.
Vaidya
,
U.
,
2022
, “
Spectral Analysis of Koopman Operator and Nonlinear Optimal Control
,”
2022 IEEE 61st Conference on Decision and Control (CDC)
,
Cancun, Mexico
,
Dec. 6–9
,
IEEE
, pp.
3853
3858
.
11.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.
12.
Huang
,
B.
, and
Vaidya
,
U.
,
2018
, “
Data-Driven Approximation of Transfer Operators: Naturally Structured Dynamic Mode Decomposition
,”
2018 Annual American Control Conference (ACC)
,
Milwaukee, WI
,
June 27–29
,
IEEE
, pp.
5659
5664
.
13.
Kumar
,
A.
,
Umathe
,
B.
,
Vaidya
,
U.
, and
Kelkar
,
A.
,
2023
, “
Reachability Analysis in Ground Vehicle System Using Koopman Operator Theory
,” INDUSCON.
14.
Brown
,
R.
, and
Hwang
,
P.
,
1997
, “Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions,”
15.
Rill
,
G.
, and
Castro
,
A. A.
,
2020
,
Road Vehicle Dynamics: Fundamentals and Modeling With MATLAB®
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.