Abstract

To improve the cybersecurity of flocking control for connected and automated vehicles (CAVs), this paper proposes a novel resilient flocking control by specifically considering cyber-attack threats on vehicle tracking errors. Using the vehicle tracking error dynamics model, a dual extended Kalman filter (DEKF) is applied to detect cyber-attacks as an unknown constant on vehicle tracking information with noise rejections. To handle the coupling effects between tracking errors and cyber-attacks, the proposed DEKF consists of a tracking error filter (TEF) and a cyber-attack filter (CAF), which are utilized to conduct the prediction and correction of tracking errors alternatively. Whenever an abnormal tracking error is detected, an observer-based resilient flocking control is enabled. Demonstrated by simulation results, the proposed cyber-attack detection method and resilient flocking control design can successfully achieve and maintain the flocking control of multi-CAV systems by rejecting certain cyber-attack threats.

References

1.
National Highway Traffic Safety Administration’s National Center for Statistics and Analysis
,
2016
, “
2015 Motor Vehicle Crashes: Overview
,” U.S. Department of Transportation,
August
2016
. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812318, Accessed April 2018.
2.
Chen
,
B.
, and
Cheng
,
H. H.
,
2010
, “
A Review of the Applications of Agent Technology in Traffic and Transportation Systems
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
2
), pp.
485
497
. 10.1109/TITS.2010.2048313
3.
Murray
,
R. M.
,
2007
, “
Recent Research in Cooperative Control of Multivehicle Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
5
), pp.
571
583
. 10.1115/1.2766721
4.
Parkinson
,
S.
,
Ward
,
P.
,
Wilson
,
K.
, and
Miller
,
J.
,
2017
, “
Cyber Threats Facing Autonomous and Connected Vehicles: Future Challenges
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
11
), pp.
2898
2915
. 10.1109/TITS.2017.2665968
5.
Siegel
,
J. E.
,
Erb
,
D. C.
, and
Sarma
,
S. E.
,
2017
, “
A Survey of the Connected Vehicle Landscape–Architectures, Enabling Technologies, Applications, and Development Areas
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
8
), pp.
2391
2406
. 10.1109/TITS.2017.2749459
6.
Biron
,
Z. A.
,
Dey
,
S.
, and
Pisu
,
P.
,
2018
, “
Real-time Detection and Estimation of Denial of Service Attack in Connected Vehicle Systems
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
12
), pp.
3893
3902
. 10.1109/TITS.2018.2791484
7.
Rahman
,
M. S.
,
Mahmud
,
M. A.
,
Oo
,
A. M. T.
, and
Pota
,
H. R.
,
2016
, “
Multi-agent Approach for Enhancing Security of Protection Schemes in Cyber-Physical Energy Systems
,”
IEEE Trans. Industrial Informatics
,
13
(
2
), pp.
436
447
. 10.1109/TII.2016.2612645
8.
Zhu
,
M.
, and
Martinez
,
S.
,
2013
, “
On the Performance Analysis of Resilient Networked Control Systems Under Replay Attacks
,”
IEEE Trans. Automatic Control
,
59
(
3
), pp.
804
808
. 10.1109/TAC.2013.2279896
9.
Boem
,
F.
,
Gallo
,
A. J.
,
Ferrari-Trecate
,
G.
, and
Parisini
,
T.
, “
A Distributed Attack Detection Method for Multi-Agent Systems Governed by Consensus-Based Control
,”
Proc. of 2017 IEEE 56th Annual Conf. on Decision and Control
,
Melbourne, VIC, Australia
,
Dec. 2017
, pp.
5961
5966
.
10.
Arrichiello
,
F.
,
Marino
,
A.
, and
Pierri
,
F.
,
2015
, “
Observer-based Decentralized Fault Detection and Isolation Strategy for Networked Multirobot Systems
,”
IEEE Trans. Control Systems Technol.
,
23
(
4
), pp.
1465
1476
. 10.1109/TCST.2014.2377175
11.
Januário
,
F.
,
Cardoso
,
A.
, and
Gil
,
P.
,
2019
, “
A Distributed Multi-Agent Framework for Resilience Enhancement in Cyber-Physical Systems
,”
IEEE Access
,
7
, pp.
31342
31357
. 10.1109/ACCESS.2019.2903629
12.
Amullen
,
E. M.
,
Shetty
,
S.
, and
Keel
,
L. H.
,
2016
, “
Model-based Resilient Control for a Multi-Agent System Against Denial of Service Attacks
,”
Proceedings of 2016 World Automation Congress
,
Rio Grande, Puerto Rico
,
July 31–Aug. 4
, p.
1570244877
.
13.
Cui
,
L.
,
Hu
,
J.
,
Park
,
B. B.
, and
Bujanovic
,
P.
,
2018
, “
Development of a Simulation Platform for Safety Impact Analysis Considering Vehicle Dynamics, Sensor Errors, and Communication Latencies: Assessing Cooperative Adaptive Cruise Control Under Cyber Attack
,”
Transportation Research Part C: Emerging Technologies
,
97
, pp.
1
22
. 10.1016/j.trc.2018.10.005
14.
Petrillo
,
A.
,
Pescapé
,
A.
, and
Santini
,
S.
,
2018
, “
A Collaborative Approach for Improving the Security of Vehicular Scenarios: The Case of Platooning
,”
Computer Communications
,
122
, pp.
59
75
. 10.1016/j.comcom.2018.03.014
15.
Iftekhar
,
L.
, and
Olfati-Saber
,
R.
,
2012
, “
Autonomous Driving for Vehicular Networks With Nonlinear Dynamics
,”
Proceedings of Intell. Veh. Symposium
,
Alcala de Henares, Spain
,
June 3–7
, pp.
723
729
.
16.
Olfati-Saber
,
R.
,
2006
, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Automatic Control
,
51
(
3
), pp.
401
420
. 10.1109/TAC.2005.864190
17.
Wang
,
F.
, and
Chen
,
Y.
,
2019
, “
Energy-Efficient Flocking Control: A Distributed Least-Informed Method
,”
Proceedings of the 2019 IEEE Conference on Control Technology and Applications
,
Hong Kong, China
,
Aug. 19–21
, pp.
332
337
.
18.
Wang
,
F.
, and
Chen
,
Y.
,
2020
, “
Fast Convergent Flocking Control of Multi-Agent Systems With Switching Communication Topology
,”
Proceedings of the 2020 American Control Conference
,
Denver, CO
,
July 1–3
, pp.
695
700
.
19.
Wang
,
F.
, and
Chen
,
Y.
,
2018
, “
A Novel Autonomous Trajectory Control for Vehicular Cyber-Physical Systems With Flocking Control Algorithms
,”
Proc. of the 2018 Amer. Control Conf.
,
Milwaukee, MI
,
June 25–27
, pp.
5076
5081
.
20.
Yu
,
W.
,
Chen
,
G.
, and
Cao
,
M.
,
2010
, “
Some Necessary and Sufficient Conditions for Second-Order Consensus in Multi-Agent Dynamical Systems
,”
Automatica
,
46
(
6
), pp.
1089
1095
. 10.1016/j.automatica.2010.03.006
21.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problems in Networks of Agents with Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
. 10.1109/TAC.2004.834113
22.
Alessandretti
,
A.
,
Aguiar
,
A. P.
, and
Jones
,
C. N.
, “
Trajectory-Tracking and Path-Following Controllers for Constrained Underactuated Vehicles Using Model Predictive Control
,”
Proc. of 2013 IEEE European Control Conf.
,
Zurich, Switzerland
,
July 2013
, pp.
1371
1376
.
23.
Indiveri
,
G.
, “
Kinematic Time-Invariant Control of a 2D Nonholonomic Vehicle
,”
Proceedings of the 38th IEEE Conf. on Decision and Control
,
Phoenix, AZ
,
Dec. 1999
, pp.
2112
2117
.
24.
Misawa
,
E. A.
, and
Hedrick
,
J. K.
,
1989
, “
Nonlinear Observers—A State-of-the-Art Survey
,”
ASME J. Dyn. Syst., Meas., Control
,
111
(
3
), pp.
344
352
. 10.1115/1.3153059
25.
Reif
,
K.
,
Gunther
,
S.
,
Yaz
,
E.
, and
Unbehauen
,
R.
,
1999
, “
Stochastic Stability of the Discrete-Time Extended Kalman Filter
,”
IEEE Trans. Automatic Control
,
44
(
4
), pp.
714
728
. 10.1109/9.754809
26.
Wenzel
,
T. A.
,
Burnham
,
K. J.
,
Blundell
,
M. V.
, and
Williams
,
R. A.
,
2006
, “
Dual Extended Kalman Filter for Vehicle State and Parameter Estimation
,”
Veh. Syst. Dyn.
,
44
(
2
), pp.
153
171
. 10.1080/00423110500385949
27.
Wang
,
F.
, and
Chen
,
Y.
,
2020
, “
A Novel Hierarchical Flocking Control Framework for Connected and Automated Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
, pp.
1
12
. 10.1109/TITS.2020.2986436
You do not currently have access to this content.