Abstract

The chemical vapor infiltration (CVI) process involves infiltrating a porous preform with reacting gases that undergo chemical transformation at high temperatures to deposit the ceramic phase within the pores, ultimately leading to a dense composite. The conventional CVI process in composite manufacturing needs to follow an isothermal approach to minimize temperature differences between the external and internal surfaces of the preform, ensuring that reactive gases infiltrate internal pores before external surfaces seal. This study addresses the challenge of premature pore closure in CVI processes through microwave heating. A frequency-domain microwave solver is developed in OpenFOAM to investigate volumetric heating mechanisms within the preform. Through numerical studies, we demonstrate the capability of microwave heating of creating an inside-out temperature inversion. This inversion accelerates reactions proximal to the preform center, effectively mitigating the risk of premature external pore closure and ensuring uniform densification. The results reveal a significant enhancement in temperature inversion when high-permittivity reflectors are incorporated to generate resonant waves. This microwave heating strategy is then coupled with high-fidelity direct numerical simulation (DNS) of reacting flow, enabling the analysis of resulting densification processes. The DNS includes detailed chemistry and realistic diffusion coefficients. The numerical results can be used to estimate the impact of microwave-induced temperature inversion on densification in productions.

References

1.
Ge
,
W.
,
Ramanuj
,
V.
,
Li
,
M.
,
Sankaran
,
R.
,
She
,
Y.
, and
Dardas
,
Z.
,
2024
, “
Modeling Microwave-Enhanced Chemical Vapor Infiltration Process for Preventing Premature Pore Closure
”. ASME Paper No. HT2024-130666. 10.1115/HT2024-130666
2.
Kennedy
,
J. M.
,
Moeller
,
H. M.
, and
Johnson
,
W. S.
,
1990
, “
Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites
,”
ASTM International
, Paper No. ASTM STP-1080.
3.
Campbell
,
F. C.
, Jr
,
2011
, “
Ceramic Matrix Composites
,”
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
4.
Leuchs
,
M.
,
2008
, “
Chemical Vapor Infiltration Processes for Ceramic Matrix Composites: Manufacturing, Properties, Applications
,”
Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications
,
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
5.
Probst
,
K. J.
,
Besmann
,
T. M.
,
Stinton
,
D. P.
,
Lowden
,
R. A.
,
Anderson
,
T. J.
, and
Starr
,
T. L.
,
1999
, “
Recent Advances in Forced-Flow, Thermal-Gradient CVI for Refractory Composites
,”
Surf. Coat. Technol.
,
120-121
, pp.
250
258
.10.1016/S0257-8972(99)00459-4
6.
Leonelli
,
C.
, and
Veronesi
,
P.
,
2012
, “
Microwave Processing of Ceramic and Ceramic Matrix Composites
,”
Ceramics Composites Processing Methods
,
Wiley & Sons
, Hoboken, NJ.
7.
Vignoles
,
G. L.
,
Descamps
,
C.
,
Charles
,
C.
, and
Klein
,
C.
,
2023
, “
How is It Possible to Get Optimal Infiltration Fronts During Chemical Vapor Infiltration With Thermal Gradients?
,”
Open Ceram.
,
15
, p.
100375
.10.1016/j.oceram.2023.100375
8.
Moeller
,
H. H.
,
Long
,
W. G.
,
Caputo
,
A. J.
, and
Lowden
,
R. A.
,
1986
, “
SiC Fiber Reinforced SiC Composites Using Chemical Vapor Infiltration
,”
SAMPE Quart.;(US)
,
17
(
3
), pp.
1
4
.
9.
Weaver
,
B. L.
,
Lowden
,
R. A.
,
McLaughlin
,
J. C.
,
Stinton
,
D. P.
,
Besmann
,
T. M.
, and
Schwarz
,
O. J.
,
1993
, “
NextelTM/SiC Composites Fabricated Using Forced Chemical Vapor Infiltration
,”
Proceedings of 17th Annual Conference on Composites and Advanced Ceramic Materials
,
Cocoa Beach, FL, Jan. 10–15
, pp.
1007
1015
.10.1002/9780470314234.ch39
10.
Janney
,
M. A.
,
Kimrey
,
H. D.
, and
Kiggans
,
J. O.
,
1992
, “
Microwave Processing of Ceramics: Guidelines Used at ORNL
,”
MRS Online Proc. Libr.
, 269, pp. 173–185.10.1557/PROC-269-173
11.
Devlin
,
D. J.
,
Currier
,
R. P.
,
Barbero
,
R. S.
, and
Espinoza
,
B. F.
,
1993
, “
Chemical Vapor Infiltration With Microwave Heating
,”
Ceram. Eng. Sci. Proc.
,
14
(
9–10
), pp.
761
767
.10.1002/SERIES2122
12.
Skamser
,
D. J.
,
Day
,
P. S.
,
Jennings
,
H. M.
, and
Johnson
,
D. L.
,
1994
, “
Hybrid Microwave-Assisted Chemical Vapor Infiltration of Alumina Fiber Composites
,”
Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials B: Ceramic Engineering and Science Proceedings
,
Wiley Online Library
, pp.
916
923
.10.1002/9780470314555.ch38
13.
Jaglin
,
D.
,
Binner
,
J.
,
Vaidhyanathan
,
B.
,
Prentice
,
C.
,
Shatwell
,
B.
, and
Grant
,
D.
,
2006
, “
Microwave Heated Chemical Vapor Infiltration: Densification Mechanism of SiCf/SiC Composites
,”
J. Am. Ceram. Soc.
,
89
(
9
), pp.
2710
2717
.10.1111/j.1551-2916.2006.01127.x
14.
Binner
,
J.
,
Vaidhyanathan
,
B.
, and
Jaglin
,
D.
,
2013
, “
Microwave Heated Chemical Vapour Infiltration of SiC Powder Impregnated SiC Fibre Preforms
,”
Adv. Appl. Ceram.
,
112
(
4
), pp.
235
241
.10.1179/1743676112Y.0000000071
15.
D’Ambrosio
,
R.
,
Aliotta
,
L.
,
Gigante
,
V.
,
Coltelli
,
M.
,
Annino
,
G.
, and
Lazzeri
,
A.
,
2021
, “
Design of a Pilot-Scale Microwave Heated Chemical Vapor Infiltration Plant: An Innovative Approach
,”
J. Eur. Ceram. Soc.
,
41
(
5
), pp.
3019
3029
.10.1016/j.jeurceramsoc.2020.05.073
16.
Sturm
,
G. S.
,
Verweij
,
M. D.
,
Van Gerven
,
T.
,
Stankiewicz
,
A. I.
, and
Stefanidis
,
G. D.
,
2012
, “
On the Effect of Resonant Microwave Fields on Temperature Distribution in Time and Space
,”
Int. J. Heat Mass Transf.
,
55
(
13–14
), pp.
3800
3811
.10.1016/j.ijheatmasstransfer.2012.02.065
17.
Porter
,
M. T.
,
Binner
,
J.
,
Cinibulk
,
M. K.
,
Stern
,
K. E.
, and
Yakovlev
,
V. V.
,
2023
, “
Computational Characterisation of Microwave Heating of Fibre Preforms for CVI of SiCf/SiC Composites
,”
J. Eur. Ceram. Soc.
,
43
(
5
), pp.
1808
1827
.10.1016/j.jeurceramsoc.2022.12.035
18.
Morell
,
J. I.
,
Economou
,
D. J.
, and
Amundson
,
N. R.
,
1992
, “
A Mathematical Model for Chemical Vapor Infiltration With Volume Heating
,”
J. Electrochem. Soc.
,
139
(
1
), pp.
328
336
.10.1149/1.2069194
19.
Morell
,
J. I.
,
Economou
,
D. J.
, and
Amundson
,
N. R.
,
1992
, “
Pulsed-Power Volume-Heating Chemical Vapor Infiltration
,”
J. Mater. Res.
,
7
(
9
), pp.
2447
2457
.10.1557/JMR.1992.2447
20.
Morell
,
J. I.
,
Economou
,
D. J.
, and
Amundson
,
N. R.
,
1993
, “
Chemical Vapor Infiltration of SiC With Microwave Heating
,”
J. Mater. Res.
,
8
(
5
), pp.
1057
1067
.10.1557/JMR.1993.1057
21.
Deepak
,
J. W
,
Evans
,
1993
, “
Mathematical Model for Chemical Vapor Infiltration in a Microwave-Heated Preform
,”
J. Am. Ceram. Soc.
,
76
(
8
), pp.
1924
1929
.10.1111/j.1151-2916.1993.tb08313.x
22.
Skamser
,
D. J.
,
Thomas
,
J. J.
,
Jennings
,
H. M.
, and
Johnson
,
D. L.
,
1995
, “
A Model for Microwave Processing of Compositionally Changing Ceramic Systems
,”
J. Mater. Res.
,
10
(
12
), pp.
3160
3178
.10.1557/JMR.1995.3160
23.
Skamser
,
D. J.
,
Jennings
,
H. M.
, and
Johnson
,
D. L.
,
1997
, “
Model of Chemical Vapor Infiltration Using Temperature Gradients
,”
J. Mater. Res.
,
12
(
3
), pp.
724
737
.10.1557/JMR.1997.0107
24.
Tilley
,
B.
, and
Kriegsmann
,
G.
,
2001
, “
Microwave-Enhanced Chemical Vapor Infiltration: A Sharp Interface Model
,”
J. Eng. Math.
,
41
, pp.
33
54
.10.1023/A:1011816630517
25.
Goyal
,
H.
, and
Vlachos
,
D. G.
,
2020
, “
Multiscale Modeling of Microwave-Heated Multiphase Systems
,”
Chem. Eng. J.
,
397
, p.
125262
.10.1016/j.cej.2020.125262
26.
Ge
,
W.
,
David
,
C.
,
Modest
,
M. F.
,
Sankaran
,
R.
, and
Roy
,
S. P.
,
2023
, “
Comparison of Spherical Harmonics Method and Discrete Ordinates Method for Radiative Transfer in a Turbulent Jet Flame
,”
J. Quant. Spectrosc. Radiat. Transf.
,
296
, p.
108459
.10.1016/j.jqsrt.2022.108459
27.
Ramanuj
,
V.
,
Li
,
M.
,
Ge
,
W.
,
Sankaran
,
R.
,
She
,
Y.
, and
Dardad
,
Z.
,
2024
, “
Effects of Temperature Inversion on Densification in Chemical Vapor Infiltration
,”
J. Am. Ceram. Soc.
, 107(9), pp.
5735–5748
.10.1111/jace.19802
28.
Ramanuj
,
V.
, and
Sankaran
,
R.
,
2019
, “
High Order Anchoring and Reinitialization of Level Set Function for Simulating Interface Motion
,”
J. Sci. Comput.
,
81
(
3
), pp.
1963
1986
.10.1007/s10915-019-01076-0
29.
Papasouliotis
,
G. D.
, and
Sotirchos
,
S. V.
,
1993
, “
Heterogeneous Kinetics of the Chemical Vapor Deposition of Silicon Carbide From Methyltrichlorosilane
,”
MRS Online Proc. Libr.
,
334
, p.
111
.10.1557/PROC-334-111
30.
Ge
,
Y.
,
Gordon
,
M. S.
,
Battaglia
,
F.
, and
Fox
,
R. O.
,
2010
, “
Theoretical Study of the Pyrolysis of Methyltrichlorosilane in the Gas Phase. 3. reaction Rate Constant Calculations
,”
J. Phys. Chem. A.
,
114
(
6
), pp.
2384
2392
.10.1021/jp911673h
31.
Dang
,
K.
, and
Chelliah
,
H. K.
,
2022
, “
Thermal Decomposition of Methyltrichlorosilane/Hydrogen/Inert Mixtures at Conditions Relevant for Chemical Vapor Infiltration of Sic Ceramics
,”
Int. J. Chem. Kinet.
,
54
(
3
), pp.
188
202
.10.1002/kin.21550
32.
Ramanuj
,
V.
,
Ge
,
W.
,
Li
,
M.
,
Sankaran
,
R.
, and
She
,
Y.
,
2023
, “
Modeling the Effects of Microwave Heating on Densification in Chemical Vapor Infiltration
,” Report No. ORNL/TM-2023/2855.
33.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
34.
Lee
,
G.
,
Law
,
M.
, and
Lee
,
V.-C.
,
2020
, “
Numerical Modelling of Liquid Heating and Boiling Phenomena Under Microwave Irradiation Using OpenFOAM
,”
Int. J. Heat Mass Transf.
,
148
, p.
119096
.10.1016/j.ijheatmasstransfer.2019.119096
35.
Sugawara
,
H.
,
Kashimura
,
K.
,
Hayashi
,
M.
,
Ishihara
,
S.
,
Mitani
,
T.
, and
Shinohara
,
N.
,
2014
, “
Behavior of Microwave-Heated Silicon Carbide Particles at Frequencies of 2.0–13.5 GHz
,”
Appl. Phys. Lett.
,
105
(
3
), p.
034103
.10.1063/1.4890849
36.
Kern
,
E.
,
Hamill
,
D.
,
Deem
,
H.
, and
Sheets
,
H.
,
1969
, “
Thermal Properties of β-Silicon Carbide From 20 to 2000 C
,”
Silicon Carbide–1968
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
S25
S32
.
37.
Maxwell-Garnett
,
J. C.
,
1904
, “
Xii. colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc. London
,
203
(
359–371
), pp.
385
420
.10.1098/rsta.1904.0024
38.
Smith
,
D. S.
,
Alzina
,
A.
,
Bourret
,
J.
,
Nait-Ali
,
B.
,
Pennec
,
F.
,
Tessier-Doyen
,
N.
,
Otsu
,
K.
,
Matsubara
,
H.
,
Elser
,
P.
, and
Gonzenbach
,
U. T.
,
2013
, “
Thermal Conductivity of Porous Materials
,”
J. Mater. Res.
,
28
(
17
), pp.
2260
2272
.10.1557/jmr.2013.179
39.
Ayappa
,
K.
,
Davis
,
H.
,
Crapiste
,
G.
,
Davis
,
E.
, and
Gordon
,
J.
,
1991
, “
Microwave Heating: An Evaluation of Power Formulations
,”
Chem. Eng. Sci.
,
46
(
4
), pp.
1005
1016
.10.1016/0009-2509(91)85093-D
40.
Jain
,
D.
,
Tang
,
J.
,
Liu
,
F.
,
Tang
,
Z.
, and
Pedrow
,
P. D.
,
2018
, “
Computational Evaluation of Food Carrier Designs to Improve Heating Uniformity in Microwave Assisted Thermal Pasteurization
,”
Innov. Food Sci. Emerg. Technol.
,
48
, pp.
274
286
.10.1016/j.ifset.2018.06.015
41.
Kalinke
,
I.
,
Pusl
,
F.
,
Häderle
,
F.
, and
Kulozik
,
U.
,
2023
, “
A Comparative Study of Frequency-Shifting Strategies for Uniform and Energy-Efficient Microwave Heating in Solid-State Microwave Systems
,”
Innov. Food Sci. Emerg. Technol.
,
86
, p.
103388
.10.1016/j.ifset.2023.103388
42.
D’Ambrosio
,
R.
,
Aghdam
,
A. M. G.
,
Cintio
,
A.
,
Konschak
,
A.
,
Schmidt
,
J.
,
Maier
,
J.
,
Toma
,
L.
,
Del Campo
,
L.
,
Rozenbaum
,
O.
,
Mallah
,
M
et al.,
2024
, “
Improved Densification of SiCf/SiC Composites by Microwave-Assisted Chemical Vapor Infiltration Process Based on Multifrequency Solid-State Sources Excitation
,”
J. Eur. Ceram. Soc.
,
45
(
3
), p.
116950
.10.1016/j.jeurceramsoc.2024.116950
You do not currently have access to this content.