Abstract

In this study, we investigated the instability of thermosolutal convection of Jeffrey fluid in a porous layer with internal heating and the Soret effect. The layer is bounded by two fixed permeable parallel plates which are assumed to be isothermal and isosolutal. An existing initial flow in the vertical direction is passing the layer at a constant speed. The flow fields are adequately presented by PDEs and transformed into dimensionless forms. A small perturbation to the basic flow profiles with linear stability analysis results the problem in an eigenvalue problem. The Runge–Kutta method is used to derive the numerical value of the critical thermal Rayleigh number. The convective instability for asymptotic cases for Le=1 and Pe=0 are also examined as special cases. The analysis reveals that for a nonpositive Soret parameter the flow is stable for all Lewis numbers and independent of the heat source. But in the case of a positive Soret parameter in the absence of a heat source, the fluid flow is stable for Le3 while the influence of a heat source destabilizes the flow for Le>2. In high and low shear flows with increasing solutal gradient, the solutal Rayleigh number shows a highly destabilizing nature for all Le. Moreover, smaller relaxation and higher retardation time are the most unstable characteristics of the heat source system. In convective longitudinal rolls, the unicellular streamline patterns tend to become bi-cellular by the influence of positive Soret parameters and energy sources.

References

1.
Horton
,
C. W.
, and
Rogers
,
F. T.
, Jr.
,
1945
, “
Convection Currents in a Porous Medium
,”
J. Appl. Phys.
,
16
(
6
), pp.
367
370
.10.1063/1.1707601
2.
Lapwood
,
E.
,
1948
, “
Convection of a Fluid in a Porous Medium
,”
Math. Proc. Camb. Philos. Soc.
,
44
(
4
), pp.
508
521
.10.1017/S030500410002452X
3.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
.
4.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
, 5th ed.,
Springer
,
New York, NY
.
5.
Barletta
,
A.
, and
Nield
,
D. A.
,
2011
, “
Linear Instability of the Horizontal Throughflow in a Plane Porous Layer Saturated by a Power-Law Fluid
,”
Phys. Fluids
,
23
(
1
), p. 013102.10.1063/1.3532805
6.
Alves
,
LD. B.
, and
Barletta
,
A.
,
2013
, “
Convective Instability of the Darcy–Bénard Problem With Through Flow in a Porous Layer Saturated by a Power-Law Fluid
,”
Int. J. Heat Mass Transfer
,
62
, pp.
495
506
.10.1016/j.ijheatmasstransfer.2013.02.058
7.
Barletta
,
A.
, and
Alves
,
L. D. B.
,
2014
, “
On Gill's Stability Problem for non-Newtonian Darcy's Flow
,”
Int. J. Heat Mass Transfer
,
79
, pp.
759
768
.10.1016/j.ijheatmasstransfer.2014.08.051
8.
Nield
,
D. A.
,
2011
, “
A Note on the Onset of Convection in a Layer of a Porous Medium Saturated by a non-Newtonian Nanofluid of Power-Law Type
,”
Transp. Porous Media
,
87
(
1
), pp.
121
123
.10.1007/s11242-010-9671-z
9.
Celli
,
M.
,
Barletta
,
A.
,
Longo
,
S.
,
Chiapponi
,
L.
,
Ciriello
,
V.
,
Di Federico
,
V.
, and
Valiani
,
A.
,
2017
, “
Thermal Instability of a Power-Law Fluid Flowing in a Horizontal Porous Layer With an Open Boundary: A Two-Dimensional Analysis
,”
Transp. Porous Media
,
118
(
3
), pp.
449
471
.10.1007/s11242-017-0863-7
10.
Alloui
,
Z.
,
Khelifa
,
N. B.
,
Beji
,
H.
, and
Vasseur
,
P.
,
2012
, “
Onset of Convection in a Horizontal Porous Layer Saturated by a Power-Law Fluid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
9
), p.
092502
.10.1115/1.4006244
11.
Barletta
,
A.
, and
Storesletten
,
L.
,
2016
, “
Linear Instability of the Vertical Throughflow in a Horizontal Porous Layer Saturated by a Power-Law Fluid
,”
Int. J. Heat Mass Transfer
,
99
, pp.
293
302
.10.1016/j.ijheatmasstransfer.2016.03.115
12.
Kumari
,
S.
, and
Murthy
,
P. V. S. N.
,
2018
, “
Stability of Vertical Throughflow of a Power Law Fluid in Double Diffusive Convection in a Porous Channel
,”
J. Appl. Fluid Mech.
,
11
(
2
), pp.
497
505
.10.29252/jafm.11.02.28190
13.
Kumari
,
S.
, and
Murthy
,
P. V. S. N.
,
2018
, “
Convective Stability of Vertical Throughflow of a non-Newtonian Fluid in a Porous Channel With Soret Effect
,”
Transp. Porous Media
,
122
(
1
), pp.
125
143
.10.1007/s11242-017-0993-y
14.
Lazzari
,
S.
,
Celli
,
M.
,
VayssièreBrandão
,
P.
, and
Barletta
,
A.
,
2022
, “
Buoyancy-Induced Instability of a Power-Law Fluid Saturating a Vertical Porous Slab
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
4
), p.
042601
.10.1115/1.4055859
15.
Platten
,
J. K.
,
2006
, “
The Soret Effect: A Review of Recent Experimental Results
,”
ASME J. Appl. Mech.
,
73
(
1
), pp.
5
15
.10.1115/1.1992517
16.
Nield
,
D. A.
,
1968
, “
Onset of Thermohaline Convection in a Porous Medium
,”
Water Resour. Res.
,
4
(
3
), pp.
553
560
.10.1029/WR004i003p00553
17.
Narayana
,
P. A. L.
,
Murthy
,
P. V. S. N.
, and
Gorla
,
R. S. R.
,
2008
, “
Soret-Driven Thermosolutal Convection Induced by Inclined Thermal and Solutal Gradients in a Shallow Horizontal Layer of a Porous Medium
,”
J. Fluid Mech.
,
612
, pp.
1
19
.10.1017/S0022112008002619
18.
Charrier-Mojtabi
,
M. C.
,
Elhajjar
,
B.
, and
Mojtabi
,
A.
,
2007
, “
Analytical and Numerical Stability Analysis of Soret-Driven Convection in a Horizontal Porous Layer
,”
Phys. Fluids
,
19
(
12
), p. 124104.10.1063/1.2821460
19.
Nield
,
D. A.
,
Manole
,
D. M.
, and
Lage
,
J. L.
,
1993
, “
Convection Induced by Inclined Thermal and Solutal Gradients in a Shallow Horizontal Layer of a Porous Medium
,”
J. Fluid Mech.
,
257
(
-1
), pp.
559
574
.10.1017/S0022112093003209
20.
Chen
,
X.
,
Wang
,
S.
,
Tao
,
J.
, and
Tan
,
W.
,
2011
, “
Stability Analysis of Thermosolutal Convection in a Horizontal Porous Layer Using a Thermal Non-Equilibrium Model
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
78
87
.10.1016/j.ijheatfluidflow.2010.06.003
21.
Roy
,
K.
, and
Murthy
,
P. V. S. N.
,
2015
, “
Soret Effect on the Double Diffusive Convection Instability Due to Viscous Dissipation in a Horizontal Porous Channel
,”
Int. J. Heat Mass Transfer
,
91
, pp.
700
710
.10.1016/j.ijheatmasstransfer.2015.08.002
22.
Gasser
,
R. D.
, and
Kazimi
,
M. S.
,
1976
, “
Onset of Convection in a Porous Medium With Internal Heat Generation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
98
(
1
), pp.
49
54
.10.1115/1.3450468
23.
Rhee
,
S. J.
,
Dhir
,
V. K.
, and
Catton
,
I.
,
1978
, “
Natural Convection Heat Transfer in Beds of Inductively Heated Particles
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
1
), pp.
78
85
.10.1115/1.3450507
24.
Khalili
,
A.
, and
Shivakumara
,
I. S.
,
1998
, “
Onset of Convection in a Porous Layer With Net Through-Flow and Internal Heat Generation
,”
Phys. Fluids
,
10
(
1
), pp.
315
317
.10.1063/1.869540
25.
Nouri-Borujerdi
,
A.
,
Noghrehabadi
,
A. R.
, and
Rees
,
D. A. S.
,
2008
, “
Influence of Darcy Number on the Onset of Convection in a Porous Layer With a Uniform Heat Source
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1020
1025
.10.1016/j.ijthermalsci.2007.07.014
26.
Celli
,
M.
,
Brandao
,
P. V.
,
Alves
,
L. S. D. B.
, and
Barletta
,
A.
,
2016
, “
Convective Instability in a Darcy Flow Heated From Below With Internal Heat Generation
,”
Transp. Porous Media
,
112
(
3
), pp.
563
575
.10.1007/s11242-016-0658-2
27.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2013
, “
Onset of Convection With Internal Heating in a Weakly Heterogeneous Porous Medium
,”
Transp. Porous Media
,
98
(
3
), pp.
543
552
.10.1007/s11242-013-0158-6
28.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2013
, “
The Effect of Heterogeneity on the Onset of Double-Diffusive Convection Induced by Internal Heating in a Porous Medium: A Layered Model
,”
Transp. Porous Media
,
100
(
1
), pp.
83
99
.10.1007/s11242-013-0206-2
29.
Shalbaf
,
S.
,
Noghrehabadi
,
A.
,
Assari
,
M. R.
, and
Daneh Dezfuli
,
A.
,
2013
, “
Linear Stability of Natural Convection in a Multilayer System of Fluid and Porous Layers With Internal Heat Sources
,”
ActaMechanica
,
224
(
5
), pp.
1103
1114
.10.1007/s00707-012-0793-y
30.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2016
, “
The Onset of Convection in a Horizontal Porous Layer With Spatially Non-Uniform Internal Heating
,”
Transp. Porous Media
,
111
(
2
), pp.
541
553
.10.1007/s11242-015-0610-x
31.
Barletta
,
A.
, and
Celli
,
M.
,
2017
, “
Instability of Parallel Buoyant Flow in a Vertical Porous Layer With an Internal Heat Source
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1063
1070
.10.1016/j.ijheatmasstransfer.2017.04.063
32.
Hill
,
A. A.
,
2005
, “
Double–Diffusive Convection in a Porous Medium With a Concentration Based Internal Heat Source
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
461
(
2054
), pp.
561
574
.10.1098/rspa.2004.1328
33.
Deepika
,
N.
, and
Narayana
,
P. A. L.
,
2016
, “
Nonlinear Stability of Double-Diffusive Convection in a Porous Layer With Throughflow and Concentration Based Internal Heat Source
,”
Transp. Porous Media
,
111
(
3
), pp.
751
762
.10.1007/s11242-016-0626-x
34.
Kumari
,
S.
, and
Murthy
,
P. V. S. N.
,
2019
, “
Thermosolutal Convective Instability of Power-Law Fluid Saturated Porous Layer With Concentration Based Internal Heat Source and Soret Effect
,”
Eur. Phys. J. Plus
,
134
(
9
), p.
474
.10.1140/epjp/i2019-12817-5
35.
Martinez-Mardones
,
J.
, and
Perez-Garcia
,
C.
,
1990
, “
Linear Instability in Viscoelastic Fluid Convection
,”
J. Phys.: Condens. Matter
,
2
(
5
), p.
1281
.10.1088/0953-8984/2/5/019
36.
Gautam
,
P. K.
,
Rana
,
G. C.
, and
Saxena
,
H.
,
2020
, “
Stationary Convection in the Electrohydrodynamic Thermal Instability of Jeffreynanofluid Layer Saturating a Porous Medium: Free-Free, Rigid-Free, and Rigid-Rigid Boundary Conditions
,”
J. Porous Media
,
23
(
11
), pp.
1043
1063
.10.1615/JPorMedia.2020035061
37.
Yadav
,
D.
,
2021
, “
Influence of Anisotropy on the Jeffrey Fluid Convection in a Horizontal Rotary Porous Layer
,”
Heat Transfer
,
50
(
5
), pp.
4595
4606
.10.1002/htj.22090
38.
Yadav
,
D.
,
2022
, “
Effect of Electric Field on the Onset of Jeffery Fluid Convection in a Heat-Generating Porous Medium Layer
,”
Pramana
,
96
(
1
), p.
19
.10.1007/s12043-021-02242-6
39.
Roy
,
K.
,
Ponalagusamy
,
R.
, and
Murthy
,
P. V. S. N.
,
2020
, “
The Effects of Double-Diffusion and Viscous Dissipation on the Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Layer
,”
Phys. Fluids
,
32
(
9
), p.
094108
.10.1063/5.0020076
40.
Kumari
,
S.
, and
Murthy
,
P. V. S. N.
,
2019
, “
Stability of the Horizontal Throughflow of a Power-Law Fluid in a Double-Diffusive Porous Layer Under Convective Boundary Conditions
,”
Int. J. Therm. Sci.
,
146
, p.
106098
.10.1016/j.ijthermalsci.2019.106098
41.
Darbhasayanam
,
S.
, and
Barman
,
D.
,
2021
, “
The Variable Gravity Field and Viscous Dissipation Effects on the Double Diffusive and Soret Driven Convective Instability in a Porous Layer With Throughflow
,”
Int. Commun. Heat Mass Transfer
,
120
, p.
105050
.10.1016/j.icheatmasstransfer.2020.105050
42.
Barletta
,
A.
, and
Nield
,
D. A.
,
2011
, “
Thermosolutal Convective Instability and Viscous Dissipation Effect in a Fluid-Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1641
1648
.10.1016/j.ijheatmasstransfer.2010.11.018
You do not currently have access to this content.