Abstract

Natural convective nanofluid flows immersed in oscillating magnetic fields are simulated with a sub-continuous nondimensional lattice Boltzmann model. The effective electrical conductivity model is built including coupled effects of nanoparticle concentrations and two Knudsen numbers. Effects of directions, frequencies, and strength amplitudes of the magnetic fields are studied in wide ranges of Hartmann numbers (0.1Haf,L600) and Rayleigh numbers (103Raf,L107). To achieve higher values of cycle averaged Nusselt numbers Nu¯̂f,L, optimal magnetic directions are along or opposite from the gravity directions. Effects of the magnetic frequency f˜B are negligible, in the conduction dominating lower Rayleigh number regime of Raf,L<104. In the convection dominating regime, Nu¯̂f,L increase with Raf,L in orders of Raf,L0.48 and Raf,L0.45 for vertical and horizontal magnetic directions, respectively, and maximum values of Nu¯̂f,L appear at the optimal magnetic frequency of f˜B=1/5cs*MaL(L/UL) for all magnetic directions. With Raf,L as high as 106, the oscillating amplitudes of the transient wall mean Nusselt numbers Nu¯f,L increase with increasing Haf,L, but the cycle averaged Nusselt numbers Nu¯̂f,L decrease from 9.35 to 1.42 with increasing Haf,L in the transient regime of 5Haf,L500. Meanwhile, heat transfer patterns transit back from convection to conduction dominating patterns with increasing Haf,L, as illustrated by transient streamlines and isotherms.

References

1.
Mornet
,
S.
,
Vasseur
,
S.
,
Grasset
,
F.
,
Veverka
,
P.
,
Goglio
,
G.
,
Demourgues
,
A.
,
Portier
,
J.
,
Pollert
,
E.
, and
Duguet
,
E.
,
2006
, “
Magnetic Nanoparticle Design for Medical Applications
,”
Prog. Solid State Chem.
,
34
(
2–4
), pp.
237
247
.10.1016/j.progsolidstchem.2005.11.010
2.
Materon
,
E. M.
,
Miyazaki
,
C. M.
,
Carr
,
O.
,
Joshi
,
N.
,
Picciani
,
P. H. S.
,
Dalmaschio
,
C. J.
,
Davis
,
F.
, and
Shimizu
,
F. M.
,
2021
, “
Magnetic Nanoparticles in Biomedical Applications: A Review, Applied Surface Science Advance
,”
Appl. Surf. Sci. Adv.
,
6
, p.
100163
.10.1016/j.apsadv.2021.100163
3.
Puneeth
,
V.
,
Manjunatha
,
S.
, and
Makinde
,
O. D.
,
2021
, “
Bioconvection of a Radiating Hybrid Nanofluid Past a Thin Needle in the Presence of Heterogeneous-Homogeneous Chemical Reaction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
4
), p.
042502
.10.1115/1.4049844
4.
Kairi
,
R. R.
,
Shaw
,
S.
,
Roy
,
S.
, and
Raunt
,
S.
,
2021
, “
Thermosolutal Marangoni Impact on Bioconvection in Suspension of Gyrotactic Microorganisms Over an Inclined Stretching Sheet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
3
), p.
031201
.10.1115/1.4048946
5.
Kwizera
,
E. A.
,
Stewart
,
S.
,
Mahmud
,
M. M.
, and
He
,
X.
,
2022
, “
Magnetic Nanoparticle-Mediated Heating for Biomedical Applications
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
3
), p.
030801
.10.1115/1.4053007
6.
Yigit
,
M. V.
,
Moore
,
A.
, and
Medarova
,
Z.
,
2012
, “
Magnetic Nanoparticles for Cancer Diagnosis and Therapy
,”
Pharm. Res.
,
29
(
5
), pp.
1180
1188
.10.1007/s11095-012-0679-7
7.
Dadfar
,
S. M.
,
Roemhild
,
K.
,
Drude
,
N. I.
,
von Stillfried
,
S.
,
Knuchel
,
R.
,
Kiessling
,
F.
, and
Lammers
,
T.
,
2019
, “
Iron Oxide Nanoparticles: Diagnostic, Therapeutic and Theranostic Applications
,”
Adv. Drug Delivery Rev.
,
138
, pp.
302
325
.10.1016/j.addr.2019.01.005
8.
Areekara
,
S.
,
Mabood
,
F.
,
Sabu
,
A. S.
,
Mathew
,
A.
, and
Badruddin
,
I. A.
,
2021
, “
Dynamics of Water Conveying Single-Wall Carbon Nanotubes and Magnetite Nanoparticles Subject to Induced Magnetic Field: A Bioconvective Model for Theranostic Applications
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105484
.10.1016/j.icheatmasstransfer.2021.105484
9.
Plank
,
C.
,
Scherer
,
F.
,
Schillinger
,
U.
,
Bergemann
,
C.
, and
Anton
,
M.
,
2003
, “
Magnetofection: Enhancing and Targeting Gene Delivery With Superparamagnetic Nanoparticles and Magnetic Fields
,”
J. Liposome Res.
,
13
(
1
), pp.
29
32
.10.1081/LPR-120017486
10.
Akbar
,
N. S.
,
Tripathi
,
D.
, and
Beg
,
O. A.
,
2016
, “
Modeling Nanoparticle Geometry Effects on Peristaltic Pumping of Medical Magnetohydrodynamic Nanofluids With Heat Transfer
,”
J. Mech. Med. Biol.
,
16
(
06
), p.
1650088
.10.1142/S0219519416500883
11.
Saleh
,
H.
,
Alali
,
E.
, and
Ebaid
,
A.
,
2017
, “
Medical Applications for the Flow of Carbon-Nanotubes Suspended Nanofluids in the Presence of Convective Condition Using Laplace Transform
,”
J. Assoc. Arab Univ. Basic Appl. Sci.
,
24
(
1
), pp.
206
212
.10.1016/j.jaubas.2016.12.001
12.
Singh
,
M.
,
Gu
,
Q.
,
Ma
,
R.
, and
Zhu
,
L.
,
2020
, “
Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
7
), p.
072501
.10.1115/1.4046967
13.
Jose
,
J.
,
Kumar
,
R.
,
Harilal
,
S.
,
Mathew
,
G. E.
,
Paramb
,
D. G. T.
,
Prabhu
,
A.
,
Uddin
,
M. S.
,
Aleya
,
L.
,
Kim
,
H.
, and
Mathew
,
B.
,
2020
, “
Magnetic Nanoparticles for Hyperthermia in Cancer Treatment: An Emerging Tool
,”
Environ. Sci. Pollut. Res.
,
27
(
16
), pp.
19214
19225
.10.1007/s11356-019-07231-2
14.
Chan
,
D. C.
,
Kirpotin
,
D. B.
, and
Bunn
,
P. A.
,
1993
, “
Synthesis and Evaluation of Colloidal Magnetic Iron Oxides for the Site-Specific Radiofrequency-Induced Hyperthermia of Cancer
,”
J. Magn. Magn. Mater.
,
122
(
1–3
), pp.
374
378
.10.1016/0304-8853(93)91113-L
15.
Jordan
,
A.
,
Wust
,
P.
,
Fahlin
,
H.
,
John
,
W.
,
Hinz
,
A.
, and
Felix
,
R.
,
2009
, “
Inductive Heating of Ferrimagnetic Particles and Magnetic Fluids: Physical Evaluation of Their Potential for Hyperthermia
,”
Int. J. Hyperthermia
,
25
(
7
), pp.
499
511
.10.3109/02656730903287790
16.
Ilg
,
P.
, and
Kroger
,
M.
,
2020
, “
Dynamics of Interacting Magnetic Nanoparticles: Effective Behavior From Competition Between Brownian and Neel Relaxation
,”
Phys. Chem. Chem. Phys.
,
22
(
39
), pp.
22244
22259
.10.1039/D0CP04377J
17.
Fortin
,
J. P.
,
Gazeau
,
F.
, and
Wilhelm
,
C.
,
2008
, “
Intracellular Heating of Living Cells Through Neel Relaxation of Magnetic Nanoparticles
,”
Eur. Biophys. J.
,
37
(
2
), pp.
223
228
.10.1007/s00249-007-0197-4
18.
Zhang
,
Y.
,
Wu
,
J.
,
He
,
J.
,
Wang
,
K.
, and
Yu
,
G.
,
2021
, “
Solutions to Obstacles in the Commercialization of Room-Temperature Magnetic Refrigeration
,”
Renewable Sustainable Energy Rev.
,
143
, p.
110933
.10.1016/j.rser.2021.110933
19.
Pattanaik
,
M. S.
,
Cheekati
,
S. K.
,
Varma
,
V. B.
, and
Ramanujan
,
R. V.
,
2022
, “
A Novel Magnetic Cooling Device for Long Distance Heat Transfer
,”
Appl. Therm. Eng.
,
201
, p.
117777
.10.1016/j.applthermaleng.2021.117777
20.
Xuan
,
Y.
, and
Lian
,
W.
,
2011
, “
Electronic Cooling Using an Automatic Energy Transport Device Based on Thermomagnetic Effect
,”
Appl. Therm. Eng.
,
31
(
8–9
), pp.
1487
1494
.10.1016/j.applthermaleng.2011.01.033
21.
Malvandi
,
A.
, and
Ganji
,
D. D.
,
2016
, “
Mixed Convection of Alumina-Water Nanofluid Inside a Concentric Annulus Considering Nanoparticle Migration
,”
Particuology
,
24
, pp.
113
122
.10.1016/j.partic.2014.12.017
22.
Sengwa
,
R. J.
, and
Saraswat
,
M.
,
2023
, “
Multiphysics of Multifunctional Nanofluids Based on Different Oxides Nanoparticles and Glycerol Fluid
,”
Particuology
,
76
, pp.
46
62
.10.1016/j.partic.2022.07.008
23.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford, UK
.
24.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Liposome Res.
,
20
(
4
), pp.
571
571
.10.1063/1.1700493
25.
Kandelousi
,
M. S.
,
2014
, “
KKL Correlation for Simulation of Nanofluid Flow and Heat Transfer in a Permeable Channel
,”
Phys. Lett. A
,
378
(
45
), pp.
3331
3339
.10.1016/j.physleta.2014.09.046
26.
Kefayati
,
G. H. R.
, and
Vajravelu
,
K.
,
2014
, “
Natural Convection of Ferrofluid in a Linearly Heated Cavity Utilizing LBM
,”
J. Mol. Liq.
,
191
, pp.
1
9
.10.1016/j.molliq.2013.11.021
27.
Dong
,
J.
,
Zheng
,
Q.
,
Yuan
,
Z.
,
Xiong
,
C.
, and
Chen
,
J.
,
2022
, “
Numerical Simulation of the Natural Convective Heat Transfer of Nanofluids in a Square Cavity Based on Different Predictive Models for Single-Phase and Multiphase Flow Mixtures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
3
), p.
032601
.10.1115/1.4055432
28.
Sheikholeslami
,
M.
,
Gorji-Bandpay
,
M.
, and
Ganji
,
D. D.
,
2012
, “
Magnetic Field Effects on Natural Convection Around a Horizontal Circular Cylinder Inside a Square Enclosure Filled With Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
978
986
.10.1016/j.icheatmasstransfer.2012.05.020
29.
Aminossadati
,
S. M.
,
Raisi
,
A.
, and
Ghasemi
,
B.
,
2011
, “
Effects of Magnetic Field on Nanofluid Forced Convection in a Partially Heated Microchannel
,”
Int. J. Non-Linear Mech.
,
46
(
10
), pp.
1373
1382
.10.1016/j.ijnonlinmec.2011.07.013
30.
Zhou
,
W.
,
Yan
,
Y.
,
Xie
,
Y.
, and
Liu
,
B.
,
2017
, “
Three Dimensional Lattice Boltzmann Simulation for Mixed Convection of Nanofluids in the Presence of Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
80
, pp.
1
9
.10.1016/j.icheatmasstransfer.2016.11.012
31.
Mahmoudi
,
A.
,
Mejri
,
I.
,
Abbassi
,
M. A.
, and
Omri
,
A.
,
2014
, “
Analysis of the Entropy Generation in a Nanofluid-Filled Cavity in the Presence of Magnetic Field and Uniform Heat Generation/Absorption
,”
J. Mol. Liq.
,
198
, pp.
63
77
.10.1016/j.molliq.2014.07.010
32.
Mejri
,
I.
,
Mahmoudi
,
A.
,
Abbassi
,
M. A.
, and
Omri
,
A.
,
2014
, “
Magnetic Field Effect on Entropy Generation in a Nanofluid-Filled Enclosure With Sinusoidal Heating on Both Side Walls
,”
Powder Technol.
,
266
, pp.
340
353
.10.1016/j.powtec.2014.06.054
33.
Kefayati
,
G. H. R.
,
2013
, “
Effect of a Magnetic Field on Natural Convection in an Open Cavity Subjugated to Water/Alumina Nanofluid Using Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
40
, pp.
67
77
.10.1016/j.icheatmasstransfer.2012.10.024
34.
Mahmoudi
,
A.
,
Mejri
,
I.
,
Abbassi
,
M. A.
, and
Omri
,
A.
,
2014
, “
Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Cavity With Linear Temperature Distribution
,”
Powder Technol.
,
256
, pp.
257
271
.10.1016/j.powtec.2014.02.032
35.
Ismael
,
M. A.
,
Mansour
,
M. A.
,
Chamkha
,
A. J.
, and
Rashad
,
A. M.
,
2016
, “
Mixed Convection in a Nanofluid Filled-Cavity With Partial Slip Subjected to Constant Heat Flux and Inclined Magnetic Field
,”
J. Magn. Magn. Mater.
,
416
, pp.
25
36
.10.1016/j.jmmm.2016.05.006
36.
Alizadeh
,
R.
,
Mesgarpour
,
M.
,
Ameri
,
A.
,
Abad
,
J. M. N.
, and
Wongwises
,
S.
,
2021
, “
Artificial Intelligence Prediction of Natural Convection of Heat in an Oscillating Cavity Filled by CuO Nanofluid
,”
J. Taiwan Inst. Chem. Eng.
,
124
, pp.
75
90
.10.1016/j.jtice.2021.04.067
37.
Song
,
D.
,
Jing
,
D.
,
Luo
,
B.
,
Geng
,
J.
, and
Ren
,
Y.
,
2015
, “
Modeling of Anisotropic Flow and Thermodynamic Properties of Magnetic Nanofluids Induced by External Magnetic Field With Varied Imposing Directions
,”
J. Appl. Phys.
,
118
(
4
), p.
045101
.10.1063/1.4927043
38.
Acharya
,
N.
,
2020
, “
Framing the Impacts of Highly Oscillating Magnetic Field on the Ferrofluid Flow Over a Spinning Disk Considering Nanoparticle Diameter and Solid-Liquid Interfacial Layer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
10
), p.
102503
.10.1115/1.4047503
39.
Kargarsharifabad
,
H.
,
2020
, “
Experimental and Numerical Study of Natural Convection of Cu-Water Nanofluid in a Cubic Enclosure Under Constant and Alternating Magnetic ields
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104957
.10.1016/j.icheatmasstransfer.2020.104957
40.
Zhang
,
X.
, and
Zhang
,
Y.
,
2021
, “
Experimental Study on Enhanced Heat Transfer and Flow Performance of Magnetic Nanofluids Under Alternating Magnetic Field
,”
Int. J. Therm. Sci.
,
164
, p.
106897
.10.1016/j.ijthermalsci.2021.106897
41.
Bonab
,
M. H. D.
,
Shafii
,
M. B.
, and
Nobakhti
,
M. H.
,
2015
, “
Experimental and Numerical Investigation of Fully Developed Forced Convection of Water-Based Fe3O4 Nanofluid Passing Through a Tube in the Presence of an Alternating Magnetic Field
,”
Adv. Mech. Eng.
,
7
(
2
), p.
168781401557102
.10.1177/1687814015571023
42.
Liu
,
W. I.
,
Alsarraf
,
J.
,
Shahsavar
,
A.
,
Rostamzadeh
,
M.
,
Afrand
,
M.
, and
Nguyen
,
T. K.
,
2019
, “
Impact of Oscillating Magnetic Field on the Thermal-Conductivity of Water-Fe3O4 and Water-Fe3O4/CNT Ferro-Fluids: Experimental Study
,”
J. Magn. Magn. Mater.
,
484
, pp.
258
265
.10.1016/j.jmmm.2019.04.042
43.
Goharkhah
,
M.
,
Ashjaee
,
M.
, and
Shahabadi
,
M.
,
2016
, “
Experimental Investigation on Convective Heat Transfer and Hydrodynamic Characteristics of Magnetite Nanofluid Under the Influence of an Alternating Magnetic Field
,”
Int. J. Therm. Sci.
,
99
, pp.
113
124
.10.1016/j.ijthermalsci.2015.08.008
44.
Yarahmadi
,
M.
,
Goudarzi
,
H. M.
, and
Shafii
,
M. B.
,
2015
, “
Experimental Investigation Into Laminar Forced Convective Heat Transfer of Ferrofluids Under Constant and Oscillating Magnetic Field With Different Magnetic Field Arrangements and Oscillation Modes
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
601
611
.10.1016/j.expthermflusci.2015.07.002
45.
Lalami
,
A. A.
,
Afrouzi
,
H. H.
,
Moshfegh
,
A.
,
Omidi
,
M.
, and
Javadzadegam
,
A.
,
2019
, “
Investigation of Nanofluid Heat Transfer in a Microchannel Under Magnetic Field Via Lattice Boltzmann Method: Effects of Surface Hydrophobicity, Viscous Dissipation, and Joule Heating
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
6
), p.
062403
.10.1115/1.4043163
46.
Kermani
,
E. P.
, and
Chen
,
Y.
,
2020
, “
Study of Magnetic Field Effects on the Oxygen Transfer in Liquid Lead Cavity Flow Using the Lattice Boltzmann Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
2
), p.
022107
.10.1115/1.4045643
47.
Su
,
Y.
, and
Davidson
,
J. H.
,
2015
, “
A Non-Dimensional Lattice Boltzmann Method for Direct and Porous Medium Model Simulations of 240-Tube Bundle Heat Exchangers in a Solar Storage Tank
,”
Int. J. Heat Mass Transfer
,
85
, pp.
195
205
.10.1016/j.ijheatmasstransfer.2015.01.109
48.
Su
,
Y.
, and
Davidson
,
J. H.
,
2018
, “
A Three-Dimensional Phonon Energy Transport Model Based on the Non-Dimensional Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
127
, pp.
303
318
.10.1016/j.ijheatmasstransfer.2018.06.148
49.
Sui
,
P.
,
Su
,
Y.
,
Sin
,
V.
, and
Davidson
,
J. H.
,
2022
, “
Effects of Knudsen Numbers on Natural Convection Patterns of Nanofluids With a Sub-Continuous Lattice Boltzmann Model
,”
Int. J. Heat Mass Transfer
,
187
, p.
122541
.10.1016/j.ijheatmasstransfer.2022.122541
50.
Su
,
Y.
,
Sui
,
P.
, and
Davidson
,
J. H.
,
2022
, “
A Sub-Continuous Lattice Boltzmann Simulation for Nanofluid Cooling of Concentrated Photovoltaic Thermal Receivers
,”
Renewable Energy
,
184
, pp.
712
726
.10.1016/j.renene.2021.11.110
51.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Simulation of Nanofluid Heat Transfer in Presence of Magnetic Field: A Review
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1203
1233
.10.1016/j.ijheatmasstransfer.2017.08.108
52.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
,
External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid: Numerical and Analytical Studies
, 1st ed.,
Elsevier Science and Technology Books
,
William Andrew, Oxford, UK
, pp.
1
44
.
53.
Ganguly
,
S.
,
Sikdar
,
S.
, and
Basu
,
S.
,
2009
, “
Experimental Investigation of the Effective Electrical Conductivity of Aluminum Oxide Nanofluids
,”
Powder Technol.
,
196
(
3
), pp.
326
330
.10.1016/j.powtec.2009.08.010
54.
Sheikholeslami
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Numerical Study for External Magnetic Source Influence on Water Based Nanofluid Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
106
, pp.
745
755
.10.1016/j.ijheatmasstransfer.2016.09.077
55.
Shoghl
,
S. N.
,
Jamali
,
J.
, and
Moraveji
,
M. K.
,
2016
, “
Electrical Conductivity, Viscosity, and Density of Different Nanofluids: An Experimental Study
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
339
346
.10.1016/j.expthermflusci.2016.01.004
56.
Kumar
,
D. T.
,
Zhou
,
Y.
,
Brown
,
V.
,
Lu
,
X.
,
Kale
,
A.
,
Yu
,
L.
, and
Xuan
,
X.
,
2015
, “
Electric Field-Induced Instabilities in Ferrofluid Microflows
,”
Microfluid. Nanofluid.
,
19
(
1
), pp.
43
52
.10.1007/s10404-015-1546-8
57.
Sarojini
,
K. G. K.
,
Manoj
,
S. V.
,
Singh
,
P. K.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2013
, “
Electrical Conductivity of Ceramic and Metallic Nanofluids
,”
Colloids Surf., A
,
417
, pp.
39
46
.10.1016/j.colsurfa.2012.10.010
58.
Shafii
,
M. B.
, and
Keshavarz
,
M.
,
2018
, “
Experimental Study of Internal Forced Convection of Ferrofluid Flow in Non-Magnetizable/Magnetizable Porous Media
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
441
450
.10.1016/j.expthermflusci.2018.03.036
59.
Jamilpanah
,
P.
,
Pahlavanzadeh
,
H.
, and
Kheradmand
,
A.
,
2017
, “
Thermal Conductivity, Viscosity, and Electrical Conductivity of Iron Oxide With a Cloud Fractal Structure
,”
Heat Mass Transfer
,
53
(
4
), pp.
1343
1354
.10.1007/s00231-016-1891-5
60.
Cruz
,
R. C. D.
,
Reinshagen
,
J.
,
Oberacker
,
R.
,
Segadães
,
A. M.
, and
Hoffmann
,
M. J.
,
2005
, “
Electrical Conductivity and Stability of Concentrated Aqueous Alumina Suspensions
,”
J. Colloid Interface Sci.
,
286
(
2
), pp.
579
588
.10.1016/j.jcis.2005.02.025
61.
Tarokh
,
A.
,
Mohamad
,
A.
, and
Jiang
,
L.
,
2013
, “
Simulation of Conjugate Heat Transfer Using the Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part A
,
63
(
3
), pp.
159
178
.10.1080/10407782.2012.725009
62.
Pan
,
C.
,
Luo
,
L.-S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
(
8–9
), pp.
898
909
.10.1016/j.compfluid.2005.03.008
63.
Wang
,
D.
, and
Cheng
,
P.
,
2019
, “
A Solid-Liquid Local Thermal Non-Equilibrium Lattice Boltzmann Model for Heat Transfer in Nanofluids. Part I: Model Development, Shear Flow and Heat Conduction in Nanofluid
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1288
1298
.10.1016/j.ijheatmasstransfer.2018.10.048
64.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
,
2007
, “
Buoyancy-Driven Heat Transfer of Water-Based A l 2 O 3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4003
4010
.10.1016/j.ijheatmasstransfer.2007.01.037
65.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
, and
Raisi
,
A.
,
2011
, “
Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1748
1756
.10.1016/j.ijthermalsci.2011.04.010
66.
Teamah
,
M. A.
, and
El-Maghlany
,
W. M.
,
2012
, “
Augmentation of Natural Convective Heat Transfer in Square Cavity by Utilizing Nanofluids in the Presence of Magnetic Field and Uniform Heat Generation/Absorption
,”
Int. J. Therm. Sci.
,
58
, pp.
130
142
.10.1016/j.ijthermalsci.2012.02.029
67.
Pirmohammadi
,
M.
, and
Ghassemi
,
M.
,
2009
, “
Effect of Magnetic Field on Convection Heat Transfer Inside a Titled Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
776
780
.10.1016/j.icheatmasstransfer.2009.03.023
68.
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2014
, “
Effect of an Alternating Nonuniform Magnetic Field on Ferrofluid Flow and Heat Transfer in a Channel
,”
J. Magn. Magn. Mater.
,
362
, pp.
80
89
.10.1016/j.jmmm.2014.03.025
69.
Ghasemian
,
M.
,
Ashrafi
,
Z.
N.,
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2015
, “
Heat Transfer Characteristics of Fe3O4 Ferrofluid Flowing in a Mini Channel Under Constant and Alternating Magnetic Fields
,”
J. Magn. Magn. Mater.
,
381
, pp.
158
167
.10.1016/j.jmmm.2014.12.078
You do not currently have access to this content.