Abstract

This study investigates the effect of the movement of a moving lid on the heat transfer and cooling of three isothermal blocks inside a cubic enclosure filled with a Cu-water nanofluid. The study's geometry is a three-dimensional enclosure with three blocks which are assumed to have a fixed hot temperature TH. The bottom, front, and back sides are insulated, while the other surfaces are kept at a cold temperature. The study considers two cases for the movement of the upper lid: one where the lid moves in the longitudinal direction, and another where it moves in the transverse direction. The dimensionless governing equations considering the boundary conditions are solved by implementing the finite volume approach with the power low as a resolution scheme. The study varies several factors such as the shape of the nanofluid, the shape factor of the blocks (3L/4, L/2, and L/4), the number of cold walls, the Richardson number (0.01 to 10), the volume fraction of nanoparticles (0 to 0.06), at a fixed Grashof number (104). The results indicate that decreasing the Richardson number improves the heat transfer coefficient's performance. Also, the study finds that longitudinal movement provides better block cooling compared to transverse movement. Additionally, the study found that changing the height of the blocks from L/4 to 3L/4 resulted in a decrease in heat transfer inside the cavity and over the blocks. Specifically for the case of the longitudinal movement, a decrease of −44% was observed along blocks one and three, and −51% along block two. As stated, the research aimed to investigate the impact of different directions of lid movement on the cooling of heater blocks, with the goal of enhancing the thermal performance and heat transfer efficiency of various technical engineering equipment.

References

1.
Nguyen
,
M. T.
,
Aly
,
A. M.
, and
Lee
,
S.-W.
,
2018
, “
A Numerical Study on Unsteady Natural/Mixed Convection in a Cavity With Fixed and Moving Rigid Bodies Using the ISPH Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
3
), pp.
684
703
.10.1108/HFF-02-2017-0058
2.
Andreozzi
,
A.
,
2018
, “
Numerical Study of Mixed Convection in a Horizontal No Parallel-Plates Channel With an Unheated Moving Plate
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
3
), pp.
547
570
.10.1108/HFF-09-2016-0340
3.
Alsabery
,
A. I.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2019
, “
Effects of Two-Phase Nanofluid Model on MHD Mixed Convection in a Lid-Driven Cavity in the Presence of Conductive Inner Block and Corner Heater
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
729
750
.10.1007/s10973-018-7377-6
4.
Dhahad
,
H. A.
,
Al-Sumaily
,
G. F.
,
Habeeb
,
L. J.
, and
Thompson
,
M. C.
,
2020
, “
The Cooling Performance of Mixed Convection in a Ventilated Enclosure With Different Ports Configurations
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
12
), p.
122601
.10.1115/1.4048096
5.
Prince
,
H. A.
,
Redwan
,
D. A.
,
Rozin
,
E. H.
,
Saha
,
S.
, and
Mamun
,
M. A. H.
,
2021
, “
Augmentation of Pure Mixed Convection Heat Transfer in a Non-Newtonian Power-Law Fluid Filled Lid-Driven Trapezoidal Cavity With Double Rotating Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
8
), p.
08260
.10.1115/1.4051127
6.
Birinci
,
S.
,
Saglam
,
M.
,
Sarper
,
B.
, and
Aydin
,
O.
,
2021
, “
Effect of Heaters' Clearance on Mixed Convection Cooling Performance in a Dicretely Heated Horizontal Duct
,”
Int. J. Therm. Sci.
,
163
, p.
106859
.10.1016/j.ijthermalsci.2021.106859
7.
Nouari
,
S.
,
Bara
,
E.
,
Lafdaili
,
Z.
,
EL-Hamdani
,
S.
,
Bendou
,
A.
, and
Doghmi
,
H.
,
2022
, “
Unsteady Numerical Investigation of Nanofluid Mixed Convection Within a Cubic Cavity With Periodic Motion of Double Oscillatory Walls
,”
Int. J. Numer. Methods Heat Fluid Flow
,
32
(
11
), pp.
3452
3469
.10.1108/HFF-10-2021-0691
8.
Kumar
,
N.
, and
Sonawane
,
S. S.
,
2016
, “
Experimental Study of Thermal Conductivity and Convective Heat Transfer Enhancement Using CuO and TiO2 Nanoparticles
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
98
107
.10.1016/j.icheatmasstransfer.2016.04.028
9.
Salman
,
S. D.
,
Kadhum
,
A. A. H.
,
Takriff
,
M. S.
, and
Abu Bakar
,
M.
,
2014
, “
Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted With Parabolic-Cut Twisted Tape Inserts
,”
The Sci. World J.
,
2014
, pp.
1
7
.10.1155/2014/543231
10.
Ait-Hssain
,
M.
,
Mir
,
R.
, and
El Hammami
,
Y.
,
2020
, “
Numerical Simulation of the Cooling of Heated Electronic Blocks in Horizontal Channel by Mixed Convection of Nanofluids
,”
J. Nanomater.
,
2020
, pp.
1
11
.10.1155/2020/4187074
11.
Islam
,
A. W.
,
Sharif
,
M. A.
, and
Carlson
,
E. S.
,
2012
, “
Mixed Convection in a Lid Driven Square Cavity With an Isothermally Heated Square Blockage Inside
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5244
5255
.10.1016/j.ijheatmasstransfer.2012.05.032
12.
Esfe
,
M. H.
,
Akbari
,
M.
,
Karimipour
,
A.
,
Afrand
,
M.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2015
, “
Mixed-Convection Flow and Heat Transfer in an Inclined Cavity Equipped to a Hot Obstacle Using Nanofluids Considering Temperature-Dependent Properties
,”
Int. J. Heat Mass Transfer
,
85
, pp.
656
666
.10.1016/j.ijheatmasstransfer.2015.02.009
13.
Mehmood
,
K.
,
Hussain
,
S.
, and
Sagheer
,
M.
,
2017
, “
Mixed Convection in Alumina-Water Nanofluid Filled Lid-Driven Square Cavity With an Isothermally Heated Square Blockage Inside With Magnetic Field Effect: Introduction
,”
Int. J. Heat Mass Transfer
,
109
, pp.
397
409
.10.1016/j.ijheatmasstransfer.2017.01.117
14.
Al-Rashed
,
A. A.
,
Kalidasan
,
K.
,
Kolsi
,
L.
,
Velkennedy
,
R.
,
Aydi
,
A.
,
Hussein
,
A. K.
, and
Malekshah
,
E. H.
,
2018
, “
Mixed Convection and Entropy Generation in a Nanofluid Filled Cubical Open Cavity With a Central Isothermal Block
,”
Int. J. Mech. Sci.
,
135
, pp.
362
375
.10.1016/j.ijmecsci.2017.11.033
15.
Ammar
,
I. A.
,
Muneer
,
A. I.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2018
, “
Mixed Convection of Al2O3-Water Nanofluid in a Double Lid-Driven Square Cavity With a Solid Inner Insert Using Buongiorno's Two-Phase Model
,”
Int. J. Heat Mass Transfer
,
119
, pp.
939
961
.10.1016/j.ijheatmasstransfer.2017.11.136
16.
Roy
,
K.
,
Giri
,
A.
, and
Das
,
B.
,
2020
, “
Laminar Entry Region Mixed Convection Heat Transfer From an Inclined Rectangular Fin Array
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
6
), pp.
3283
3305
.10.1108/HFF-04-2019-0275
17.
Azizul
,
F. M.
,
Alsabery
,
A. I.
, and
Hashim
,
I.
,
2020
, “
Heatlines Visualisation of Mixed Convection Flow in a Wavy Heated Cavity Filled With Nanofluids and Having an Inner Solid Block
,”
Int. J. Mech. Sci.
,
175
, p.
105529
.10.1016/j.ijmecsci.2020.105529
18.
Vinod
,
S.
, and
Philip
,
J.
,
2022
, “
Thermal and Rheological Properties of Magnetic Nanofluids: Recent Advances and Future Directions
,”
Adv. Colloid Interface Sci.
,
307
, p.
102729
.10.1016/j.cis.2022.102729
19.
Philip
,
J.
,
2023
, “
Magnetic Nanofluids (Ferrofluids): Recent Advances, Applications, Challenges, and Future Directions
,”
Adv. Colloid Interface Sci.
,
311
, p.
102810
.10.1016/j.cis.2022.102810
20.
Rostami
,
A. K.
,
Alizadeh
,
M.
,
Fazlollahtabar
,
A.
, and
Ganji
,
D. D.
,
2021
, “
Performance Enhancement of a Maple Leaf-Shaped Latent Heat Energy Storage Unit by Adding Nanoparticles and Leaf Vein Fins
,”
J. Energy Storage
,
43
, p.
103159
.10.1016/j.est.2021.103159
21.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
22.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.10.1063/1.1700493
23.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
24.
Iwatsu
,
R.
, and
Hyun
,
J. M.
,
1995
, “
Three-Dimensional Driven-Cavity Flows With a Vertical Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3319
3328
.10.1016/0017-9310(95)00080-S
25.
Du
,
H. Y.
,
Chai
,
Z. H.
, and
Shi
,
B. H.
,
2011
, “
Lattice Boltzmann Study of Mixed Convection in a Cubic Cavity
,”
Commun. Theory Phys.
,
56
(
1
), pp.
144
150
.10.1088/0253-6102/56/1/25
You do not currently have access to this content.