Abstract

Multilayer materials have been widely used in engineering applications, attributed to excellent thermo-mechanical performances. However, the thermal or mechanical properties of multilayer materials remain elusive, owing to contact behaviors etc. factors. In order to address this issue, an innovative method is employed to estimate the effective thermal conductivity (ETC) of multilayer materials considering thermal contact resistance (TCR) between layers, and the equivalence performance is investigated by solving three-dimensional inverse heat conduction problems. First, the equivalence method is validated by available experimental data of a multilayered insulation composite material. Then, the precision of different equivalence methods is compared, and the results indicate that the anisotropic equivalence method has higher accuracy than the isotropic and orthotropic equivalences for the five-layer material in the present work. Finally, the robustness and stability of the anisotropic equivalence method are evaluated in detail. The present work provides a new alternative method for predicting the effective thermal conductivity of multilayer materials.

References

1.
Ghalambor
,
S.
,
Agonafer
,
D.
, and
Haji-Sheikh
,
A.
,
2013
, “
Analytical Thermal Solution to a Nonuniformly Powered Stack Package With Contact Resistance
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
11
), p.
111015
.10.1115/1.4024623
2.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2021
, “
Theoretical Modeling of Heat Transfer in a Multilayer Rectangular Body With Spatially-Varying Convective Heat Transfer Boundary Condition
,”
Int. J. Therm. Sci.
,
170
, p.
107156
.10.1016/j.ijthermalsci.2021.107156
3.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2020
, “
Analytical Solution for Temperature Distribution in a Multilayer Body With Spatially Varying Convective Heat Transfer Boundary Conditions on Both Ends
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
3
), p.
034501
.10.1115/1.4048968
4.
Bakhtiari
,
M.
,
Daneshjou
,
K.
, and
Alibakhshi
,
R.
,
2016
, “
A New Approach to Thermal Analysis of a Multilayered Cylindrical Structure With Imperfect Bonds and Internal Heat Source
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
12
), p.
122801
.10.1115/1.4034038
5.
Low
,
Z. K.
,
Blal
,
N.
,
Naouar
,
N.
, and
Baillis
,
D.
,
2020
, “
Influence of Boundary Conditions on Computation of the Effective Thermal Conductivity of Foams
,”
Int. J. Heat Mass Transfer
,
155
, p.
119781
.10.1016/j.ijheatmasstransfer.2020.119781
6.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2021
, “
Temperature Distribution in a Multi-Layer Cylinder With Circumferentially-Varying Convective Heat Transfer Boundary Conditions
,”
Int. J. Therm. Sci.
,
160
, p.
106673
.10.1016/j.ijthermalsci.2020.106673
7.
Fakoor-Pakdaman
,
M.
,
Ahmadi
,
M.
,
Bagheri
,
F.
, and
Bahrami
,
M.
,
2015
, “
Optimal Time-Varying Heat Transfer in Multilayered Packages With Arbitrary Heat Generations and Contact Resistance
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
8
), p.
081401
.10.1115/1.4028243
8.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2018
, “
Spreading Resistance in Multilayered Orthotropic Flux Channels With Different Conductivities in the Three Spatial Directions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
7
), p.
071302
.10.1115/1.4038712
9.
Maazoun
,
A.
,
Mezghani
,
A.
, and
Moussa
,
A. B.
,
2021
, “
Numerical Study of Thermal Properties of a Silica Aerogel Material
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
3
), p.
034502
.10.1115/1.4049275
10.
Kim
,
D. M.
,
Han
,
D. J.
,
Heo
,
T. W.
,
Kang
,
S.
,
Wood
,
B. C.
,
Lee
,
J.
,
Cho
,
E. S.
, and
Lee
,
B. J.
,
2022
, “
Enhancement of Effective Thermal Conductivity of Rgo/Mg Nanocomposite Packed Beds
,”
Int. J. Heat Mass Transfer
,
192
, p.
122891
.10.1016/j.ijheatmasstransfer.2022.122891
11.
Elidi
,
M. M.
,
Karkri
,
M.
, and
Kraiem
,
M.
,
2021
, “
Preparation and Effective Thermal Conductivity of a Paraffin/Metal Foam Composite
,”
J. Energy Storage
,
33
, p.
102077
.10.1016/j.est.2020.102077
12.
Yang
,
L.
,
Zhao
,
J. F.
,
Wang
,
B.
,
Liu
,
W. G.
,
Yang
,
M. J.
, and
Song
,
Y. C.
,
2016
, “
Effective Thermal Conductivity of Methane Hydrate-Bearing Sediments: Experiments and Correlations
,”
Fuel
,
179
, pp.
87
96
.10.1016/j.fuel.2016.03.075
13.
Chen
,
Y.
,
Li
,
D.
,
Xie
,
X. Q.
,
Gao
,
Y.
, and
He
,
Y. L.
,
2020
, “
Theoretical Modeling and Experimental Validation for the Effective Thermal Conductivity of Moist Silica Aerogel
,”
Int. J. Heat Mass Transfer
,
147
, p.
118842
.10.1016/j.ijheatmasstransfer.2019.118842
14.
Hussain
,
M.
, and
Tao
,
W. Q.
,
2020
, “
Thermal Conductivity of Composite Building Materials: A Pore Scale Modeling Approach
,”
Int. J. Heat Mass Transfer
,
148
, p.
118691
.10.1016/j.ijheatmasstransfer.2019.118691
15.
Lee
,
Y.-M.
,
Yang
,
R.-B.
, and
Gau
,
S.-S.
,
2006
, “
A Generalized Self-Consistent Method for Calculation of Effective Thermal Conductivity of Composites With Interfacial Contact Conductance
,”
Int. Commun. Heat Mass Transfer
,
33
(
2
), pp.
142
150
.10.1016/j.icheatmasstransfer.2005.10.004
16.
Wang
,
K.
, and
Wang
,
G. J.
,
2019
, “
Fuzzy Adaptive Regularization Method for Inverse Steady-State Heat Transfer Problem
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
3
), p.
031301
.10.1115/1.4042462
17.
Liu
,
H.
,
Xia
,
X. L.
,
Ai
,
Q.
,
Xie
,
X. Q.
, and
Sun
,
C.
,
2017
, “
Experimental Investigations on Temperature-Dependent Effective Thermal Conductivity of Nanoporous Silica Aerogel Composite
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
67
77
.10.1016/j.expthermflusci.2017.01.021
18.
Huang
,
C.-H.
, and
Huang
,
C.-Y.
,
2007
, “
An Inverse Problem in Estimating Simultaneously the Effective Thermal Conductivity and Volumetric Heat Capacity of Biological Tissue
,”
Appl. Math. Model.
,
31
(
9
), pp.
1785
1797
.10.1016/j.apm.2006.06.002
19.
Hematiyan
,
M. R.
,
Khosravifard
,
A.
, and
Shiah
,
Y. C.
,
2015
, “
A Novel Inverse Method for Identification of 3d Thermal Conductivity Coefficients of Anisotropic Media by the Boundary Element Analysis
,”
Int. J. Heat Mass Transfer
,
89
, pp.
685
693
.10.1016/j.ijheatmasstransfer.2015.05.034
20.
Cui
,
M.
,
Zhao
,
Y.
,
Xu
,
B. B.
, and
Gao
,
X. W.
,
2017
, “
A New Approach for Determining Damping Factors in Levenberg–Marquardt Algorithm for Solving an Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
107
, pp.
747
754
.10.1016/j.ijheatmasstransfer.2016.11.101
21.
Guo
,
J.
,
Chen
,
X. N.
,
Qu
,
Z. G.
, and
Ren
,
Q. L.
,
2021
, “
Reverse Identification Method for Simultaneous Estimation of Thermal Conductivity and Thermal Contact Conductance of Multilayered Composites
,”
Int. J. Heat Mass Transfer
,
173
, p.
121244
.10.1016/j.ijheatmasstransfer.2021.121244
You do not currently have access to this content.