Abstract

Tubes with enhanced surfaces usually have high boiling heat transfer coefficients which can greatly improve the heat transfer performance under the condition of pool nucleate boiling. In this paper, the boiling heat transfer enhancement behavior was carried out for T-shaped finned tubes, improved T-shaped finned tubes, trapezoidal finned tubes, and smooth tubes. The heat transfer enhancement mechanism in a high boiling medium with different fin shapes was explored. Experimental data show that the boiling heat transfer coefficients of finned tubes with different shapes are 1.4 to 3 times higher than that of the smooth tubes in the same heat load range. Moreover, the tested results were fitted by the correlation formula of heat transfer coefficient, which can be used to guide engineering design. Furthermore, combined with the field coordination theory, the heat transfer characteristics of machining finned tubes were obtained by the software of Fluent. The simulated enhanced heat transfer performances under different heat transfer flux are in good agreement with experimental data.

References

1.
Xu
,
H.
,
Dai
,
Y.
,
Cao
,
H.
,
Liu
,
J.
,
Zhang
,
L.
,
Xu
,
M.
,
Cao
,
J.
,
Xu
,
P.
, and
Liu
,
J.
,
2018
, “
Tubes With Coated and Sintered Porous Surface for Highly Efficient Heat Exchangers
,”
Front. Chem. Sci. Eng.
,
12
(
3
), pp.
367
375
.10.1007/s11705-018-1703-1
2.
Seo
,
S. B.
, and
Bang
,
I. C.
,
2019
, “
Acoustic Analysis on the Dynamic Motion of Vapor-Liquid Interface for the Identification of Boiling Regime and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1138
1146
.10.1016/j.ijheatmasstransfer.2018.11.136
3.
Mori
,
S.
,
Maruoka
,
N.
, and
Okuyama
,
K.
,
2018
, “
Critical Heat Flux Enhancement by a Two-Layer Structured Honeycomb Porous Plate in a Saturated Pool Boiling of Water
,”
Int. J. Heat Mass Transfer
,
118
, pp.
429
438
.10.1016/j.ijheatmasstransfer.2017.10.100
4.
Wang
,
L.
,
Khan
,
A. R.
,
Erkan
,
N.
,
Gong
,
H.
, and
Okamoto
,
K.
,
2017
, “
Critical Heat Flux Enhancement on a Downward Face Using Porous Honeycomb Plate in Saturated Flow Boiling
,”
Int. J. Heat Mass Transfer
,
109
, pp.
454
461
.10.1016/j.ijheatmasstransfer.2017.01.113
5.
Deng
,
D.
,
Feng
,
J.
,
Huang
,
Q.
,
Tang
,
Y.
, and
Lian
,
Y.
,
2016
, “
Pool Boiling Heat Transfer of Porous Structures With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
99
, pp.
556
568
.10.1016/j.ijheatmasstransfer.2016.04.015
6.
Cieśliński
,
J. T.
,
2011
, “
Flow and Pool Boiling on Porous Coated Surfaces
,”
Rev. Chem. Eng.
,
27
(
3–4
), pp.
179
190
.10.1515/REVCE.2011.007
7.
Vemuri
,
S.
, and
Kim
,
K. J.
,
2005
, “
Pool Boiling of Saturated FC-72 on Nano-Porous Surface
,”
Int. Commun. Heat Mass Transfer
,
32
(
1–2
), pp.
27
31
.10.1016/j.icheatmasstransfer.2004.03.020
8.
Men
,
Q.
,
Wang
,
X.
, and
Meng
,
X.
,
2016
, “
Characteristics of Pool Boiling on Bronze Sintered Porous Surface Tubes at Subatmospheric Pressures
,”
Heat Transfer Res.
,
47
(
8
), pp.
721
732
.10.1615/HeatTransRes.2016009701
9.
Bhanja
,
D.
, and
Kundu
,
B.
,
2011
, “
Thermal Analysis of a Constructal T-Shaped Porous Fin With Radiation Effects
,”
Int. J. Refrig.
,
34
(
6
), pp.
1483
1496
.10.1016/j.ijrefrig.2011.04.003
10.
Jun
,
S.
,
Kim
,
J.
,
You
,
S. M.
, and
Kim
,
H. Y.
,
2016
, “
Effect of Heater Orientation on Pool Boiling Heat Transfer From Sintered Copper Microporous Coating in Saturated Water
,”
Int. J. Heat Mass Transfer
,
103
, pp.
277
284
.10.1016/j.ijheatmasstransfer.2016.07.030
11.
Kedzierski
,
M. A.
,
1999
, “
Enhancement of R123 Pool Boiling by the Addition of N-Hexane
,”
J. Enhanced Heat Transfer
,
6
(
5
), pp.
343
355
.10.1615/JEnhHeatTransf.v6.i5.20
12.
Marto
,
P. J.
, and
Lepere
,
V. J.
,
1982
, “
Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
2
), pp.
292
299
.10.1115/1.3245086
13.
Chu
,
H.
, and
Yu
,
B.
,
2009
, “
A New Comprehensive Model for Nucleate Pool Boiling Heat Transfer of Pure Liquid at Low to High Heat Fluxes Including CHF
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4203
4210
.10.1016/j.ijheatmasstransfer.2009.04.010
14.
Lee
,
S.
,
Inoue
,
A.
, and
Takahashi
,
M.
,
1995
, “
Critical Heat Flux Characteristics of R-113 Boiling Two-Phase Flow in Twisted-Tape-Inserted Tubes
,”
Trans. Jpn. Soc. Mech. Eng.
,
61
(
585
), pp.
272
287
.10.1299/kikaib.61.1754
15.
Nirgude
,
V. V.
, and
Sahu
,
S. K.
,
2017
, “
Enhancement of Nucleate Boiling Heat Transfer Using Structured Surfaces
,”
Chem. Eng. Process.: Process Intensif.
,
122
, pp.
222
234
.10.1016/j.cep.2017.10.013
16.
Shoji
,
M.
, and
Takagi
,
Y.
,
2001
, “
Bubbling Features From a Single Artificial Cavity
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2763
2776
.10.1016/S0017-9310(00)00300-8
17.
Jiang
,
Y. Y.
,
Wang
,
W. C.
,
Wang
,
D.
, and
Wang
,
B. X.
,
2001
, “
Boiling Heat Transfer on Machined Porous Surfaces With Structural Optimization
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
443
456
.10.1016/S0017-9310(00)00057-0
18.
Thimmaiah
,
P. C.
,
Sharafian
,
A.
,
Huttema
,
W.
,
Osterman
,
C.
,
Ismail
,
A.
,
Dhillon
,
A.
, and
Bahrami
,
M.
,
2016
, “
Performance of Finned Tubes Used in Low-Pressure Capillary-Assisted Evaporator of Adsorption Cooling System
,”
Appl. Therm. Eng.
,
106
, pp.
371
380
.10.1016/j.applthermaleng.2016.06.038
19.
Fang
,
Q. Y.
, and
Deng
,
S. J.
,
1986
, “
Boiling Heat Transfer of Machined Surface Porous Tubes
,”
Chinese Society of Engineering Thermophysics Heat and Mass Transfer Academic Meeting
, Wuhan, China, p.
21
.
20.
Masahiro
,
I.
,
Yasunobu
,
F.
, and
Kaneyasu
,
N.
,
1979
, “
High Performance Heat Transfer Surface for Nuclear Boiling Heat Transfer
,”
Science of Machine
, 31, pp. 77–87.https://cir.nii.ac.jp/crid/1524232505097865856
21.
Zhong
,
L.
, and
Tan
,
Y. K.
,
1989
, “
The Study of High Efficient Boiling Heat Transfer Enhancement Surfaces
,”
J. South China Univ. Technol. (Nat. Sci.)
,
17
(
4
), pp.
26
34
.
22.
Xia
,
Z. Z.
,
Yang
,
G. Z.
, and
Wang
,
R. Z.
,
2009
, “
Capillary-Assisted Flow and Evaporation Inside Circumferential Rectangular Micro Groove
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
952
961
.10.1016/j.ijheatmasstransfer.2008.05.041
23.
Bar-Cohen
,
A.
, and
Simon
,
T. W.
,
1988
, “
Wall Superheat Excursions in the Boiling Incipience of Dielectric Fluids
,”
Heat Transfer Eng.
,
9
(
3
), pp.
19
31
.10.1080/01457638808939668
24.
Xin
,
M.-D.
, and
Chao
,
Y. I.-D.
,
1987
, “
Analysis and Experiment of Boiling Heat Transfer on T-Shaped Finned Surfaces
,”
Chem. Eng. Commun.
,
50
(
1–6
), pp.
185
199
.10.1080/00986448708911825
25.
Cao
,
Y. D.
,
Xin
,
D. M.
, and
Xie
,
H. D.
,
1986
, “
Analysis and Experiment of Boiling Heat Transfer on T-Shaped Finned Surfaces
,”
J. Eng. Thermophys.
,
V7
(
1
), pp.
63
66
.
26.
Zhikui
,
W.
,
1998
,
Principles of Chemical Engineering
, 2nd ed.,
Chemical Industry Press
, China.
27.
Kolaczkowski
,
S. T.
,
Chao
,
R.
,
Awdry
,
S.
, and
Smith
,
A.
,
2007
, “
Application of a CFD Code (FLUENT) to Formulate Models of Catalytic Gas Phase Reactions in Porous Catalyst Pellets
,”
Chem. Eng. Res. Des.
,
85
(
11
), pp.
1539
1552
.10.1205/cherd06226
28.
Krishna
,
R.
, and
van Baten
,
J. M.
,
1999
, “
Rise Characteristics of Gas Bubbles in a 2D Rectangular Column: VOF Simulations versus Experiments
,”
Int. Commun. Heat Mass Transfer
,
26
(
7
), pp.
965
974
.10.1016/S0735-1933(99)00086-X
29.
Chang
,
W.
,
Zhang
,
S. S.
,
Cheng
,
L.
, and
Guo
,
L.
,
2012
, “
Nucleate Boiling Heat Transfer in Vertical Rectangular Mini-Channel
,”
J. Central South Univ.
,
43
(
2
), pp.
743
748
.
30.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
91
(
2
), pp.
245
250
.10.1115/1.3580136
You do not currently have access to this content.