Abstract

Triple-diffusive convection for nanofluids in which differences in density are derived because of triple diffusion process, i.e., with three diffusing components: nanoparticles, solute, and heat, using more realistic two temperature model with separate thermal energy equations for the two phases of the considered nanofluid has been investigated by making use of the method of superposition and one term Galerkin technique. A complex system with local thermal non-equilibrium (LTNE) effects along with the Brownian motions and thermophoresis to account for nanoparticles has been considered. The problem is solved for top-heavy arrangement of nanoparticles leading to stationary mode of convection and numerical computations are carried out by using Mathematica software. An additional solute concentration equation supplements the conservation equations due to the existence of solute, which introduces two additional nondimensional parameters, whereas three additional parameters came into existence due to the consideration of LTNE effects. The critical Rayleigh number remains constant for smaller values of interphase heat transfer parameter, whereas it diminishes for the intermediate range and approaches to constant value for higher ranges of the parameters. What all this means is that only the intermediate range of Nield parameter shows stabilizing/destabilizing effects. Interestingly, the additional parameters Lewis number and solute Rayleigh number enhance the effect of destabilization of considered nanofluid layer.

References

1.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Paper No. FED- 231/MD
,
66
, pp.
99
105
.
2.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
3.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
4.
Tzou
,
D. Y.
,
2008
, “
Instability of Nanofluid in Natural Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
7
), pp.
1
9
.10.1115/1.2908427
5.
Tzou
,
D. Y.
,
2008
, “
Thermal Instability of Nanofluid in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2967
2979
.10.1016/j.ijheatmasstransfer.2007.09.014
6.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5796
5801
.10.1016/j.ijheatmasstransfer.2009.07.023
7.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model
,”
Transp. Porous Media
,
81
(
3
), pp.
409
422
.10.1007/s11242-009-9413-2
8.
Agarwal
,
S.
,
Bhadauria
,
B. S.
, and
Siddheshwar
,
P. G.
,
2011
, “
Thermal Instability of a Nanofluid Saturating a Rotating Anisotropic Porous Medium
,”
Spec. Top. Rev. Porous Media
,
2
(
1
), pp.
53
64
.10.1615/SpecialTopicsRevPorousMedia.v2.i1.60
9.
Gupta
,
U.
,
Ahuja
,
J.
, and
Wanchoo
,
R. K.
,
2013
, “
Magneto Convection in a Nanofluid Layer
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1163
1171
.10.1016/j.ijheatmasstransfer.2013.05.035
10.
Garoosi
,
F.
,
Jahanshaloo
,
L.
,
Rashidi
,
M. M.
,
Badakhsh
,
A.
, and
Ali
,
M. A.
,
2015
, “
Numerical Simulation of Natural Convection of the Nanofluid in Heat Exchangers Using a Buongiorno Model
,”
Appl. Math. Comput.
,
254
, pp.
183
203
.10.1016/j.amc.2014.12.116
11.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2011
, “
The Onset of Double-Diffusive Convection in a Nanofluid Layer
,”
Int. J. Heat Fluid Flow
,
32
(
4
), pp.
771
776
.10.1016/j.ijheatfluidflow.2011.03.010
12.
Yadav
,
D.
,
Agrawal
,
G. S.
, and
Bhargava
,
R.
,
2012
, “
The Onset of Convection in a Binary Nanofluid Saturated Porous Layer
,”
Int. J. Theor. Appl. Multiscale Mech.
,
2
(
3
), pp.
198
224
.10.1504/IJTAMM.2012.049931
13.
Gupta
,
U.
,
Sharma
,
J.
, and
Wanchoo
,
R. K.
,
2014
, “
Thermosolutal Convection in a Horizontal Nanofluid Layer: Introduction of Oscillatory Motions
,” Recent Advances in Computer Science and Engineering
(IEEE)
, Chandigarh, India, Mar. 6-8, No. 14254377.10.1109/RAECS.2014.6799566
14.
Gupta
,
U.
,
Sharma
,
J.
, and
Sharma
,
V.
,
2015
, “
Instability of Binary Nanofluid With Magnetic Field
,”
Appl. Math. Mech.
,
36
(
6
), pp.
693
706
.10.1007/s10483-015-1941-6
15.
Vadasz
,
P.
,
2006
, “
Heat Convection in Nanofluid Suspensions
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
5
), pp.
465
477
.10.1115/1.2175149
16.
Vadasz
,
P.
,
2009
, “
Nanofluid Suspensions as Derivative of Interface Heat Transfer Modelling in Porous Media
,”
ASME
Paper No. HT2009-88295.10.1115/HT2009-88295
17.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Effect of Local Thermal Non- Equilibrium on the Onset of Convection in a Nanofluid
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
5
), pp.
1
7
.10.1115/1.4000474
18.
Agarwal
,
S.
,
Rana
,
P.
, and
Bhadauria
,
B. S.
,
2014
, “
Rayleigh–Bénard Convection in a Nanofluid Layer Using a Thermal Non-Equilibrium Model
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
12
), pp.
1
14
.10.1115/1.4028491
19.
Agarwal
,
S.
, and
Bhadauria
,
B. S.
,
2015
, “
Thermal Instability of a Nanofluid Layer Under Local Thermal Non- Equilibrium
,”
Nano Convergence
,
2
(
6
), pp.
1
16
.10.1186/s40580-014-0037-z
20.
Kuznetsov
,
A. V.
,
Nield
,
D. A.
,
Barletta
,
A.
, and
Celli
,
M.
,
2015
, “
Local Thermal Non-Equilibrium and Heterogeneity Effect on the Onset of Double Diffusive Convection in an Internally Heated and Saluted Porous Medium
,”
Transp. Porous Media
,
109
(
2
), pp.
393
409
.10.1007/s11242-015-0525-6
21.
Ahuja
,
J.
, and
Gupta
,
U.
,
2016
, “
MHD Effects for a Rotating Nanofluid Layer for LTNE Model
,”
Int. J. Technol.
,
6
(
2
), pp.
209
214
.10.5958/2231-3915.2016.00032.8
22.
Vadasz
,
P.
,
2021
, “
A Hidden Anomaly in the Binary Mixture Natural Convection Subject to Flux Boundary Conditions
,”
Physics
,
3
(
1
), pp.
144
159
.10.3390/physics3010012
23.
Chandrasekhar
,
S.
,
1981
,
Hydrodynamic and Hydromagnetic Stability
,
Dover Publications
,
New York
.
24.
Nield
,
D. A.
,
Kuznetsov
,
A. V.
,
Barletta
,
A.
, and
Celli
,
M.
,
2015
, “
The Effect of Double-Diffusion and Local Thermal Non-Equilibrium on the Onset of Convection in a Layered Porous Medium: Non-Oscillatory Instability
,”
Transp. Porous Media
,
107
(
1
), pp.
261
279
.10.1007/s11242-014-0436-y
25.
Sharma
,
J.
, and
Gupta
,
U.
,
2020
, “
Nanofluid Convection Under Hall Currents and LTNE Effects
,”
Mater. Today Proc.
,
26
(
3
), pp.
3369
3377
.10.1016/j.matpr.2019.10.149
26.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
29
(
3
), pp.
217
223
.10.1016/j.euromechflu.2010.02.003
You do not currently have access to this content.