Abstract

A weakly time-dependent equation for the evolution of the solid–liquid interface in spherical coordinates, driven by internal heat generation, is derived for constant surface temperature boundary conditions. The derivation comes by making an assumption that the interface moves slowly compared to the changes in the temperature so that the technique of separation of variables may be applied for Stefan numbers less than one. Under this approximation, we can separate the nonhomogeneous heat diffusion equation into transient and steady-state terms, and then integrate to get the temperature relations. With the temperature equations in hand, the derivatives are inserted into the interface equation giving a first-order differential equation for the location of the solid–liquid interface as a function of time. The results are compared to a previously derived quasi-static solution and a numerical simulation generated using the method of catching of the front. This method allows for direct tracking of a moving boundary via the calculation of the time it takes to move from node to node in a discretized grid characteristic of classical finite difference methods. Plots of the interface evolution show excellent agreement between the three methods, especially for lower Stefan numbers. The quality of the approximation decreases as the Stefan number increases, but the model is more accurate than the previously studied quasi-static model. For the Stefan numbers St = 1.0 and 10.0, the weakly time-dependent solutions are in better agreement with the numerical results than the quasi-static solutions.

References

1.
Lamé
,
G.
, and
Clapeyron
,
E.
,
1831
, “
Mémoire Sur la Solidification Par Refroidissement D'un Globe Liquid
,”
Ann. Chim. Phys.
,
47
, pp.
250
256
.
2.
Weber
,
H.
,
1901
,
Die Partiellen Differential-Gleichungen Der Mathematischen Physik
,
Vieweg
,
Braunshweig
, p.
122
.
3.
Stefan
,
J.
,
1889
, “
Über Die Theorie Der Eisbildung, Insbesondere Über Die Eisbildung im Polarmeere
,”
Sitzungsberichte Der Kaiserlichen Akademie Der Wissenschaften, Mathematische-Naturwissenschaftliche Classe, II Abtheilung
, Vol.
98
, Vienna, Austria, pp.
965
983
.
4.
Rubenstein
,
L. I.
,
1971
,
The Stefan Problem
,
AMS
,
Providence, RI
.
5.
Gupta
,
S. C.
,
2003
,
The Classical Stefan Problem: Basic Concepts, Modelling and Analysis
,
Elsevier
,
Amsterdam, The Netherlands
.
6.
Chutia
,
B. N.
,
1966
, “
On the Melting of Cylinders and Spheres
,” M.S. thesis,
Oregon State University
, Corvallis, OR.
7.
Huang
,
C. L.
, and
Shih
,
Y. P.
,
1975
, “
A Perturbation Method for Spherical and Cylindrical Solidification
,”
Chem. Eng. Sci.
,
30
(
8
), pp.
897
906
.10.1016/0009-2509(75)80055-8
8.
Mori
,
A.
, and and Araki, K.,
1976
, “
Methods for Analysis of the Moving Boundary-Surface Problem
,”
Int. Chem. Eng.
,
16
, pp.
734
744
.
9.
Stewartson
,
K.
, and
Waechter
,
R. T.
,
1976
, “
On Stefan's Problem for Spheres
,”
Proc. R. Soc. London, Ser. A, Math. Phys. Sci.
,
348
, pp.
415
426
.10.1098/rspa.1976.0046
10.
Soward
,
A. M.
,
1980
, “
A Unified Approach to Stefan's Problem for Spheres and Cylinders
,”
Proc. R. Soc. London A, Math., Phys. Eng. Sci.
,
373
, pp.
131
147
.10.1098/rspa.1980.0140
11.
Moore
,
F. E.
, and
Bayazitoglu
,
Y.
,
1982
, “
Melting Within a Spherical Enclosure
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
1
), pp.
19
23
.10.1115/1.3245053
12.
Caldwell
,
J.
, and
Chan
,
C. C.
,
2000
, “
Spherical Solidification by the Enthalpy Method and the Heat Balance Integral Method
,”
Appl. Math. Model.
,
24
(
1
), pp.
45
53
.10.1016/S0307-904X(99)00031-1
13.
McCue
,
S.
,
Wu
,
B.
, and
Hill
,
J. M.
,
2008
, “
Classical Two-Phase Stefan Problem for Spheres
,”
Proc. R. Soc. A
,
464
(
2096
), pp.
2055
2076
.10.1098/rspa.2007.0315
14.
Chiba, R.
,
2014
, “
Approximate Analytical Method to Stefan Problem for Spheres With Wide Temperature Range of Phase Transition
,”
Appl. Mech. Mater.
,
627
, pp.
145
148
.10.4028/www.scientific.net/AMM.627.145
15.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2007
, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1790
1804
.10.1016/j.ijheatmasstransfer.2006.10.007
16.
Assis
,
E.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2009
, “
Numerical and Experimental Study of Solidification in a Spherical Shell
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
2
), p.
024502
.10.1115/1.2993543
17.
Hosseinizadeh
,
S. F.
,
Rabienataj Darzi
,
A. A.
,
Tan
,
F. L.
, and
Khodadadi
,
J. M.
,
2013
, “
Unconstrained Melting Inside a Sphere
,”
Int. J. Therm. Sci
,.,
63
, pp.
55
64
.10.1016/j.ijthermalsci.2012.07.012
18.
Amin
,
N. A. M.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2014
, “
Effective Thermal Conductivity for Melting in PCM Encapsulated in a Sphere
,”
Appl. Energy
,
122
, pp.
280
287
.10.1016/j.apenergy.2014.01.073
19.
Lin
,
Q.
,
Wang
,
S.
,
Ma
,
Z.
,
Wang
,
J.
, and
Zhang
,
T.
,
2018
, “
Lattice Boltzmann Simulation of Flow and Heat Transfer Evolution Inside Encapsulated Phase Change Materials Due to Natural Convection Melting
,”
Chem. Eng. Sci.
,
189
, pp.
154
164
.10.1016/j.ces.2018.05.052
20.
Wang
,
H.
,
Duan
,
M.
,
An
,
C.
, and
Su
,
J.
,
2021
, “
Lumped Parameter Thermal Analysis of Multilayered Composite Pipe With MicroPCM Particles
,”
Compos. Struct.
,
260
, p.
113495
.10.1016/j.compstruct.2020.113495
21.
Kenisarin
,
M. M.
,
Mahkamov
,
K.
,
Costa
,
S. C.
, and
Makhkamova
,
I.
,
2020
, “
Melting and Solidification of PCMs Inside a Spherical Capsule: A Critical Review
,”
J. Energy Storage
,
27
, p.
101082
.10.1016/j.est.2019.101082
22.
An
,
C.
,
Moreira
,
F. C.
, and
Su
,
J.
,
2014
, “
Thermal Analysis of the Melting Process in a Nuclear Fuel Rod
,”
Appl. Therm. Eng.
,
68
(
1–2
), pp.
133
143
.10.1016/j.applthermaleng.2014.04.005
23.
Brown
,
N. R.
,
2020
, “
A Review of in-Pile Fuel Safety Tests of TRISO Fuel Forms and Future Testing Opportunities in Non-HTGR Applications
,”
J. Nucl. Mater.
,
534
, p.
152139
.10.1016/j.jnucmat.2020.152139
24.
Loper
,
D.
,
2003
, “
Earth's Core
,”
Encyclopedia of Physical Science and Technology
,
R. A.
Meyers
, ed.,
Academic Press
, Cambridge, MA.
25.
Dhir
,
V. K.
,
Wong
,
K.
, and
Kastenberg
,
W. E.
,
1977
, “
Solidification of a Sphere With Internal Heat Generation and Convective Cooling at the Surface
,”
Nuclear Sci. Eng.
,
63
(
3
), pp.
350
356
.10.13182/NSE77-A27049
26.
Chandra Kumar
,
M.
,
Jasmin Sudha
,
A.
,
Ponraju
,
D.
, and
Athmalingam
,
S.
,
2020
, “
Effect of Internal Heat Generation on Solidification of Molten Fuel Droplet During Its Interaction With Coolant in a Nuclear Reactor
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
912
(
4
), p.
042006
.10.1088/1757-899X/912/4/042006
27.
Gibson
,
R. E.
,
1959
, “
A Heat Conduction Problem Involving a Specified Moving Boundary
,”
Q. Appl. Math.
,
16
(
4
), pp.
426
430
.10.1090/qam/103713
28.
Griffiths
,
D. J.
,
2013
,
Introduction to Electrodynamics
,
Pearson
, London, UK.
29.
Foot
,
C. J.
,
2005
,
Atomic Physics
,
Oxford
, Oxford, UK.
30.
Myers
,
T. G.
,
Hennessy
,
M. G.
, and
Calvo-Schwarzwälder
,
M.
,
2020
, “
The Stefan Problem With Variable Thermophysical Properties and Phase Change Temperature
,”
Int. J. Heat Mass Transfer
,
149
, p.
118975
.10.1016/j.ijheatmasstransfer.2019.118975
31.
McCord
,
D.
,
Crepeau
,
J.
,
Siahpush
,
A.
, and
Ferres Brogin
,
J. A.
,
2016
, “
Analytical Solutions to the Stefan Problem With Internal Heat Generation
,”
Appl. Therm. Eng.
,
103
, pp.
443
451
.10.1016/j.applthermaleng.2016.03.122
32.
Barannyk
,
L.
,
Crepeau
,
J.
,
Paulus
,
P.
, and
Siahpush
,
A.
,
2018
, “
Fourier-Bessel Series Model for the Stefan Problem With Internal Heat Generation in Cylindrical Coordinates
,”
Proceedings of 26th International Conference on Nuclear Engineering ICONE26
, London, UK, July 22–26, Paper No. 81009.
33.
Barannyk
,
L.
,
Williams
,
S.
,
Ogidan
,
O.
,
Crepeau
,
J.
, and
Sakhnov
,
A.
,
2019
, “
On the Stefan Problem With Internal Heat Generation and Prescribed Heat Flux Conditions at the Boundary
,”
ASME
Paper No. HT2019-3703.10.1115/HT2019-3703
34.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Introduction to Heat Transfer
, 4th ed.,
Wiley
,
New York
.
35.
Poulikakos
,
D.
,
1994
,
Conduction Heat Transfer
,
Prentice Hall
,
Englewood Cliffs
.
36.
Haberman
,
R.
,
2018
,
Applied Partial Differential Equations With Fourier Series and Boundary Value Problems
, 5th ed.,
Pearson
, London, UK.
37.
Abramowitz
,
M.
, and
Stegun
,
I.
, (Eds),
1972
,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
9
th ed,
Dover
,
New York
.
38.
Weisstein, E. W.,
2020
, “Rayleigh's Formulas,” From MathWorld--A Wolfram Web Resource, Champaign, IL accessed Sept. 21, 2020, https://mathworld.wolfram.com/RayleighsFormulas.html
39.
Samarskii
,
A. A.
, and
Vabishchevich
,
P. N.
,
1995
,
Computational Heat Transfer, Mathematical Modelling
, Vol.
1
,
Wiley
,
Hoboken, NJ
.
40.
Anderson
,
A. D.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
,
1985
,
Computational Fluid Mechanics and Heat Transfer
,
Hemisphere
, London, UK.
41.
Crepeau
,
J. C.
,
Sakhnov
,
A. Y.
, and
Naumkin
,
V. S.
,
2019
, “
Stefan Problem With Internal Heat Generation: Comparison of Numerical Modeling and Analytical Solution
,”
J. Phys. Conf. Ser.
,
1369
, p.
012025
.10.1088/1742-6596/1369/1/012025
42.
Kee
,
R. J.
,
Landram
,
C. S.
, and
Miles
,
J. C.
,
1976
, “
Natural Convection of a Heat-Generating Fluid Within Closed Vertical Cylinders and Spheres
,”
ASME J. Heat Transfer-Trans. ASME
,
98
(
1
), pp.
55
61
.10.1115/1.3450469
43.
Fink
,
J. K.
,
2000
, “
Thermophysical Properties of Uranium Dioxide
,”
J. Nucl. Mater.
,
279
(
1
), pp.
1
18
.10.1016/S0022-3115(99)00273-1
44.
Crepeau
,
J. C.
, and
Siahpush
,
A.
,
2008
, “
Approximate Solutions to the Stefan Problem With Internal Heat Generation
,”
Heat Mass Transfer
,
44
(
7
), pp.
787
794
.10.1007/s00231-007-0298-8
45.
Paulus
,
P.
,
2021
, “
Numerical Simulations of the Stefan Problem in Cylindrical Coordinates With Internal Heat Generation
,” M.S. thesis,
University of Idaho
, Moscow, ID.
You do not currently have access to this content.