Abstract

The present investigation explores the dynamic effects of wall motion on the turbulent flow and thermal characteristics of a dual jet. The effects of variation in Reynolds number (Re) and offset ratio (OR) on different heat transfer and flow characteristics of turbulent dual jet have also been elucidated. The Reynolds number of flow and offset ratio are considered in the range Re=1000025000and OR=513, respectively. The wall to jet velocity ratio (Uw) is varied in the range of 02at an interval of 0.5. The detailed study of heat transfer from moving impingement wall has been done by considering either the isoflux or the isothermal boundary condition on the heated wall. The motion of the wall strongly affects the thermal behavior and several flow characteristics of the dual jet. The nature of the velocity profile in the vector diagram changes from parabolic to linear in the far-field region due to the motion of the wall. The dual jet flow exhibits different patterns of self-similar profiles for different values of velocity ratio. The value of maximum longitudinal velocity (Umax) at a given axial position increases with the increase in impingement wall velocity. The exhaustive parametric study of dual jet flow over a moving wall reveals the fact that the process of heat transfer from heated moving wall to fluid is more intense for the higher value of Reynolds number and offset ratio, and for isoflux boundary condition. For the moving wall case, the maximum enhancement in heat transfer with reference to the stationary wall has been found to be 45.31%.

References

1.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2007
, “
Experimental Investigation of the Interaction Between a Plane Wall Jet and a Parallel Offset Jet
,”
Exp. Fluids
,
42
(
4
), pp.
551
562
.10.1007/s00348-007-0263-9
2.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2009
, “
Study of the Heat Transfer Characteristics in a Turbulent Combined Wall and Offset Jet Flows
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1949
1959
.10.1016/j.ijthermalsci.2009.02.020
3.
Kumar
,
A.
, and
Das
,
M. K.
,
2011
, “
Study of a Turbulent Dual Jet Consisting of a Wall Jet and an Offset Jet
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101201
.10.1115/1.4004823
4.
Kumar
,
A.
,
2015
, “
Mean Flow Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Comput. Fluids
,
114
, pp.
48
65
.10.1016/j.compfluid.2015.02.017
5.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2016
, “
Analysis of Conjugate Heat Transfer for a Combined Turbulent Wall Jet and Offset Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
5
), p.
051701
.10.1115/1.4032287
6.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
Wall Inclination Effect in Heat Transfer Characteristics of a Combined Wall and Offset Jet Flow
,”
Int. J. Heat Fluid Flow
,
64
, pp.
66
78
.10.1016/j.ijheatfluidflow.2017.01.010
7.
Assoudi
,
A.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2019
, “
Comparative Study of Flow Characteristics of a Single Offset Jet and a Turbulent Dual Jet
,”
Heat Mass Transfer
,
55
(
4
), pp.
1109
1131
.10.1007/s00231-018-2493-1
8.
Rathore
,
S. K.
,
2019
, “
Study of Conjugate Heat Transfer From Heated Plate by Turbulent Offset Jet in Presence of Freestream Motion Using Low-Reynolds Number Modeling
,”
J. Appl. Fluid Mech.
,
12
(
2
), pp.
617
630
.10.29252/jafm.12.02.28974
9.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Heat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041017
.10.1115/1.4045882
10.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2021
, “
Role of a Sinusoidal Wavy Surface in Enhancement of Heat Transfer Using Turbulent Dual Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
032002
.10.1115/1.4049274
11.
Behera
,
V. M.
, and
Rathore
,
S. K.
,
2021
, “
Numerical Investigation of Turbulent Offset Jet Flow Over a Moving Flat Plate Using Low-Reynolds Number Turbulence Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
, p.
051005
.10.1115/1.4049751
12.
Tritton
,
D. J.
,
1977
,
Physical Fluid Dynamics
,
Von Nostrand Reinhold
, London,
UK
, pp.
284
286
.
13.
Li
,
Z.
,
Huai
,
W.
, and
Han
,
J.
,
2011
, “
Large Eddy Simulation of the Interaction Between Wall Jet and Offset Jet
,”
J. Hydrodyn
.,
23
(
5
), pp.
544
553
.10.1016/S1001-6058(10)60148-5
14.
Mondal
,
T.
,
Das
,
M. K.
, and
Guha
,
A.
,
2014
, “
Numerical Investigation of Steady and Periodically Unsteady Flow for Various Separation Distances Between a Wall Jet and an Offset Jet
,”
J. Fluids Struct.
,
50
, pp.
528
546
.10.1016/j.jfluidstructs.2014.07.009
15.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2015
, “
Computational Study of Periodically Unsteady Interaction Between a Wall Jet and an Offset Jet for Various Velocity Ratios
,”
Comput. Fluids
,
123
, pp.
146
161
.10.1016/j.compfluid.2015.09.015
16.
Mondal
,
T.
,
Das
,
M. K.
, and
Guha
,
A.
,
2016
, “
Transition of a Steady to a Periodically Unsteady Flow for Various Jet Widths of a Combined Wall Jet and Offset Jet
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
070907
.10.1115/1.4032750
17.
Kumar
,
A.
,
2015
, “
Mean Flow and Thermal Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Numer. Heat Transfer: Part A
,
67
(
10
), pp.
1075
1096
.10.1080/10407782.2014.955348
18.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2018
, “
Numerical Investigation of Velocity Ratio Effect in Combined Wall and Offset Jet Flows
,”
J. Hydrodyn.
,
30
(
6
), pp.
774
781
.10.1007/s42241-018-0136-0
19.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Effect of Wavy Wall Surface on Flow Structure and Thermal Characteristics of a Turbulent Dual Jet Comprising of a Wall Jet and an Offset Jet
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
, 235(3), pp.
524
545
.10.1177/0957650920925945
20.
Rathore
,
S. S.
, and
Verma
,
S. K.
,
2021
, “
A Comparative Study of Fluid Flow Characteristics of Dual Jet Using Different RANS Based Turbulence Models
,”
Lecture Notes in Mechanical Engineering (Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems
,
Springer
, New York, pp.
355
365
.
21.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
22.
ANSYS
,
2016
,
ANSYS FLUENT Theory Guide V. 17.2
,
ANSYS Inc
., Canonsburg, PA.
23.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishers
,
New York
.
24.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2021
, “
Numerical Analysis to Study Enhancement in Heat Transfer Using Wavy Surface in Turbulent Dual Jet
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105631
.10.1016/j.icheatmasstransfer.2021.105631
25.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1998
, “
A Turbulent Plane Offset Jet With Small Offset Ratio
,”
Exp. Fluids
,
24
(
1
), pp.
47
57
.10.1007/s003480050149
26.
Lai
,
J. C. S.
, and
Nasr
,
A.
,
1998
, “
Two Parallel Plane Jets: Comparison of the Performance of Three Turbulence Models
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
212
(
6
), pp.
379
391
.10.1243/0954410981532351
27.
Anderson
,
E. A.
, and
Spall
,
R. E.
,
2001
, “
Experimental and Numerical Investigation of Two-Dimensional Parallel Jets
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
401
406
.10.1115/1.1363701
28.
Pramanik
,
S.
, and
Das
,
M. K.
,
2013
, “
Numerical Characterization of a Planar Turbulent Offset Jet Over an Oblique Wall
,”
Comput. Fluids
,
77
, pp.
36
55
.10.1016/j.compfluid.2013.02.007
29.
Pramanik
,
S.
, and
Das
,
M. K.
,
2014
, “
Computational Study of a Turbulent Wall Jet Flow on an Oblique Surface
,”
Int. J. Numer. Methods Heat Fluid
,
24
(
2
), pp.
290
324
.10.1108/HFF-01-2012-0005
30.
Hnaien
,
N.
,
Marzouk
,
S.
,
Kolsi
,
L.
,
Al-Rashed
,
A. A. A. A.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2018
, “
Numerical Study and Correlations Development on Twin-Parallel Jets Flow With Non-Equal Outlet Velocities
,”
Front. Heat Mass Transfer
,
11
(
8
), pp.
1
11
.10.5098/hmt.11.8
31.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2019
, “
Fluid Flow Analysis of a Turbulent Offset Jet Impinging on a Wavy Wall Surface
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234(20)
, pp.
544
–563
.10.1177/0954406219880209
32.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2007
, “
Computation of Mean Flow and Thermal Characteristics of Incompressible Turbulent Offset Jet Flows
,”
Numer. Heat Transfer: Part A
,
53
(
8
), pp.
843
869
.10.1080/10407780701715760
33.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Numerical Study to Enhance the Heat Transfer Using Sinusoidal Wavy Surface for Turbulent Wall Jet
,”
Numer. Heat Transfer: Part A
,
77
(
2
), pp.
179
198
.10.1080/10407782.2019.1688026
34.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Enhancement of Heat Transfer Using Turbulent Wall Jet
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
234
(
1
), pp.
123
136
.10.1177/0954408919891391
35.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
Wolfersdorf
,
J. V.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
5
), p. 0
51701
.10.1115/1.4003080
36.
Siddique
,
W.
,
EI-Gabry
,
L.
,
Shevchuk
,
I. V.
, and
Fransson
,
T. H.
,
2013
, “
Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge
,”
ASME J. Turbomach.
,
135
(
1
), p. 0
11027
.10.1115/1.4006534
37.
Fasquelle
,
A.
,
Pell
,
J.
,
Harmand
,
S.
, and
Shevchuk
,
I. V.
,
2014
, “
Numerical Study of Convective Heat Transfer Enhancement in a Pipe Rotating Around a Parallel Axis
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
5
), p. 0
51901
.10.1115/1.4025642
38.
Pelfrey
,
J. R. R.
, and
Liburdy
,
J. A.
,
1986
, “
Mean Flow Characteristics of a Turbulent Offset Jet
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
82
88
.10.1115/1.3242548
39.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of Two Low-Reynolds Number Turbulence Models for Fluid Flow Study of Wall Bounded Jets
,”
Int. J. Heat Mass Transfer
,
61
, pp.
365
380
.10.1016/j.ijheatmasstransfer.2013.01.062
40.
Holland
,
J. T.
, and
Liburdy
,
J. A.
,
1990
, “
Measurements of the Thermal Characteristics of Heated Offset Jets
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp.
69
78
.10.1016/0017-9310(90)90142-H
41.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
(
-1
), pp.
669
690
.10.1017/S002211209200096X
42.
Benmouhoub
,
D.
, and
Mataoui
,
A.
,
2015
, “
Inclination of an Impinging Jet on a Moving Wall to Control the Stagnation Point Location
,”
Int. J. Therm. Sci.
,
89
, pp.
294
304
.10.1016/j.ijthermalsci.2014.11.007
You do not currently have access to this content.