Abstract

A full three-dimensional (3D) numerical simulation of solidification was carried out for a benchmark experiment on a binary Sn-10 wt. %Pb alloy. The experiment process involves a melting stage, a first holding stage at constant temperature with electromagnetic stirring, setting a mean horizontal temperature difference (second holding stage), and finally solidification stage by decreasing the temperature under a imposed horizontal temperature gradient. The numerical model is applied only to investigate the solidification stage and compared with the measured temperature fields and macrosegregation obtained from the postmortem analysis. A columnar numerical model based on a two-phase volume-averaged approach is used for the numerical simulation, accounting for thermosolutal convection and assuming perfect microscopic mixing (lever rule) in the mushy zone. It demonstrates that such a model is able to predict stratification in the solute from the liquid phase and mushy zone during the solidification. The effect of the sedimentation on macrosegregations and channel segregation or freckles which develop during the solidification stage is also predicted by the model and compared with experimental data. Emphasis is given to the main factors that have a direct effect on the development and morphology of segregated channels, namely, the remelting phenomenon, dendrite fragmentation, and the solidification front instabilities.

References

1.
Hebditch
,
D. J.
, and
Hunt
,
J. D.
,
1974
, “
Observations of Ingot Macrosegregation on Model Systems
,”
Metall. Trans. B
,
5
(
7
), pp.
1557
1563
.10.1007/BF02646326
2.
Bellet
,
M.
,
Combeau
,
H.
,
Fautrelle
,
Y.
,
Gobin
,
D.
,
Rady
,
M.
,
Arquis
,
E.
,
Budenkova
,
O.
,
Dussoubs
,
B.
,
Duterrail
,
Y.
,
Kumar
,
A.
,
Gandin
,
C. A.
,
Goyeau
,
B.
,
Mosbah
,
S.
, and
Založnik
,
M.
,
2009
, “
Call for Contributions to a Numerical Benchmark Problem for 2D Columnar Solidification of Binary Alloys
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2013
2016
.10.1016/j.ijthermalsci.2009.07.024
3.
Ahmad
,
N.
,
Combeau
,
H.
,
Desbiolles
,
J. L.
,
Jalanti
,
T.
,
Lesoult
,
G.
,
Rappaz
,
J.
,
Rappaz
,
M.
, and
Stomp
,
C.
,
1998
, “
Numerical Simulation of Macrosegregation: A Comparison Between Finite Volume Method and Finite Element Method Predictions and a Confrontation With Experiments
,”
Metall. Mater. Trans. A
,
29
(
2
), pp.
617
630
.10.1007/s11661-998-0143-9
4.
Schneider
,
M. C.
, and
Beckermann
,
C.
,
1995
, “
A Numerical Study of the Combined Effects of Microsegregation, Mushy Zone Permeability and Flow, Caused by Volume Contraction and Thermosolutal Convection, on Macrosegregation and Eutectic Formation in Binary Alloy Solidification
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3455
3473
.10.1016/0017-9310(95)00054-D
5.
Beckermann
,
C.
,
2002
, “
Modelling of Macrosegregation: Applications and Future Needs
,”
Int. Mater. Rev.
,
47
(
5
), pp.
243
261
.10.1179/095066002225006557
6.
Založnik
,
M.
, and
Combeau
,
H.
,
2009
, “
Effects of Solidification Kinetics and Liquid Density in Modeling of Macrosegregation in Castings
,”
The Minerals, Metals & Materials Society
, Canada, June 4, pp.
253
260
.https://www.researchgate.net/publication/200743413_Effects_of_solidification_kinetics_and_liquid_density_in_modeling_of_macrosegregation_in_castings
7.
Chakraborty
,
S.
, and
Dutta
,
P.
,
2002
, “
The Effect of Solutal Undercooling on Double-Diffusive Convection and Macrosegregation During Binary Alloy Solidification: A Numerical Investigation
,”
Int. J. Numer. Methods Fluids
,
38
(
9
), pp.
895
917
.10.1002/fld.254
8.
Carozzani
,
T.
,
Gandin
,
C. A.
,
Digonnet
,
H.
,
Bellet
,
M.
,
Zaidat
,
K.
, and
Fautrelle
,
Y.
,
2013
, “
Direct Simulation of a Solidification Benchmark Experiment
,”
Metall. Mater. Trans. A
,
44
(
2
), pp.
873
887
.10.1007/s11661-012-1465-1
9.
Gouttebroze
,
S.
,
Fachinotti
,
V. D.
,
Bellet
,
M.
, and
Combeau
,
H.
,
2005
, “
3D-FEM Modeling of Macrosegregation in Solidification of Binary Alloys
,”
Int. J. Forming Process.
,
8
, pp.
203
217
.https://hal-mines-paristech.archives-ouvertes.fr/hal-00678503
10.
De Felice
,
V. F.
,
Tveito
,
K. O.
,
Založnik
,
M.
,
Combeau
,
H.
, and
M'Hamdi
,
M.
,
2012
, “
Three-Dimensional Study of Macro- and Mesosegregation Formation in a Rectangular Cavity Cooled From One Vertical Side
,”
IOP Conf. Series Mater. Sci. Eng.
,
33
(
1
), p.
012088
.10.1088/1757-899X/33/1/012088
11.
Li
,
J.
,
Wu
,
M.
,
Hao
,
J.
, and
Ludwig
,
A.
,
2012
, “
Simulation of Channel Segregation Using a Two-Phase Columnar Solidification model - Part I: Model Description and Verification
,”
Comput. Mater. Sci.
,
55
, pp.
407
418
.10.1016/j.commatsci.2011.12.037
12.
Kumar
,
A.
,
Založnik
,
M.
,
Combeau
,
H.
,
Goyeau
,
B.
, and
Gobin
,
D.
,
2013
, “
A Numerical Simulation of Columnar Solidification: Influence of Inertia on Channel Segregation
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
4
), p.
045016
.10.1088/0965-0393/21/4/045016
13.
Kumar
,
A.
,
Dussoubs
,
B.
,
Založnik
,
M.
, and
Combeau
,
H.
,
2011
, “
Influence of Discretization of Permeability Term and Mesh Size on the Prediction of Channel Segregations
,”
IOP Conf. Series Mater. Sci. Eng.
,
27
, p.
012039
.10.1088/1757-899X/27/1/012039
14.
Wang
,
X. D.
,
Petitpas
,
P.
,
Garnier
,
C.
,
Paulin
,
J.-P.
, and
Fautrelle
,
Y.
,
2007
, “
A Quasi Two-Dimensional Benchmark Experiment for the Solidification of a Tin-Lead Binary Alloy
,”
C. R. Méc.
,
335
(
5–6
), pp.
336
341
.10.1016/j.crme.2007.05.009
15.
Wang
,
X. D.
, and
Fautrelle
,
Y.
,
2009
, “
An Investigation of the Influence of Natural Convection on Tin Solidification Using a Quasi-Two-Dimensional Experimental Benchmark
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5624
5633
.10.1016/j.ijheatmasstransfer.2009.05.030
16.
Prescott
,
P. J.
, and
Incropera
,
F. P.
,
1994
, “
Convective Transport Phenomena and Macrosegregation During Solidification of a Binary Metal Alloy: I-Numerical Predictions
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
3
), pp.
735
741
.10.1115/1.2910929
17.
Prescott
,
P. J.
,
Incropera
,
F. P.
, and
Gaskell
,
D. R.
,
1994
, “
Convective Transport Phenomena and Macrosegregation During Solidification of a Binary Metal Alloy: II-Experiments and Comparisons With Numerical Predictions
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
3
), pp.
742
749
.10.1115/1.2910930
18.
Gao
,
J. W.
, and
Wang
,
C. Y.
,
1999
, “
An Experimental Investigation Into the Effects of Grain Transport on Columnar to Equiaxed Transition During Dendritic Alloy Solidification
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
2
), pp.
430
437
.10.1115/1.2825996
19.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1989
, “
An Experimental Investigation of Binary Solidification in a Vertical Channel With Thermal and Solutal Mixed Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
3
), pp.
706
712
.10.1115/1.3250740
20.
Mosbah
,
S.
,
2008
, “
Multiple Scales Modeling of Solidification Grain Structures and Segregation in Metallic Alloys
,” Ph.D. thesis,
Sciences et Génie des Matériaux, CEMEF—Centre de Mise en Forme des Matériaux, ENSMP
, Paris, France.
21.
Boussaa
,
R.
,
Hachani
,
L.
,
Budenkova
,
O.
,
Botton
,
V.
,
Henry
,
D.
,
Zaidat
,
K.
,
Ben Hadid
,
H.
, and
Fautrelle
,
Y.
,
2016
, “
Macrosegregations in Sn-3 wt%Pb Alloy Solidification: Experimental and 3D Numerical Simulation Investigations
,”
Int. J. Heat Mass Transfer
,
100
, pp.
680
690
.10.1016/j.ijheatmasstransfer.2016.04.120
22.
Zheng
,
Y.
,
Wu
,
M.
,
Karimi-Sibaki
,
E.
,
Kharicha
,
A.
, and
Ludwig
,
A.
,
2018
, “
Use of a Mixed Columnar-Equiaxed Solidification Model to Analyse the Formation of as-Cast Structure and Macrosegregation in a Sn-10 wt.%Pb Benchmark Experiment
,”
Int. J. Heat Mass Transfer
,
122
, pp.
939
953
.10.1016/j.ijheatmasstransfer.2018.02.012
23.
Ares
,
A. E.
,
Gassa
,
L. M.
,
Gueijman
,
S. F.
, and
Schvezov
,
C. E.
,
2008
, “
Correlation Between Thermal Parameters, Structures, Dendritic Spacing and Corrosion Behavior of Zn-Al Alloys With Columnar to Equiaxed Transition
,”
J. Crystal Growth
,
310
(
7–9
), pp.
1355
1361
.10.1016/j.jcrysgro.2007.11.169
24.
Ares
,
A. E.
, and
Schvezov
,
C. E.
,
2007
, “
Influence of Solidification Thermal Parameters on the Columnar-to Equiaxed Transition of Aluminum-Zinc and Zinc-Aluminum Alloys
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
38
(
7
), pp.
1485
1499
.10.1007/s11661-007-9111-z
25.
Wang
,
T.
,
Hachani
,
L.
,
Fautrelle
,
Y.
,
Delannoy
,
Y.
,
Wang
,
E.
,
Wang
,
X.
, and
Budenkova
,
O.
,
2020
, “
Numerical Modeling of a Benchmark Experiment on Equiaxed Solidification of a Sn-Pb Alloy With Electromagnetic Stirring and Natural Convection
,”
Int. J. Heat Mass Transfer
,
151
, p.
119414
.10.1016/j.ijheatmasstransfer.2020.119414
26.
Gandin
,
C.-A.
,
Blaizot
,
J.
,
Mosbah
,
S.
,
Bellet
,
M.
,
Zimmermann
,
G.
,
Sturz
,
L.
,
Browne
,
D. J.
,
McFadden
,
S.
,
Jung
,
H.
,
Billia
,
B.
,
Mangelinck-Noël
,
N.
,
Nguyen-Thi
,
H.
,
Fautrelle
,
Y.
, and
Wang
,
X. D.
,
2010
, “
Modeling of Heat and Solute Interactions Upon Grain Structure Solidification
,”
Mater. Sci. Forum
,
649
, pp.
189
198
.10.4028/www.scientific.net/MSF.649.189
27.
Koster
,
J. N.
, and
Derebail
,
R.
,
1997
, “
A Threshold for Onset of Natural Convection in Binary Metallic Alloys
,”
Heat Mass Transfer
,
32
(
6
), pp.
489
498
.10.1007/s002310050150
28.
Hachani
,
L.
,
Zaidat
,
K.
,
Saadi
,
B.
,
Wang
,
X.
, and
Fautrelle
,
Y.
,
2015
, “
Solidification of Sn-Pb: Experiments on the Influence of the Initial Concentration
,”
Int. J. Therm. Sci.
,
91
, pp.
34
48
.10.1016/j.ijthermalsci.2015.01.007
29.
Hachani
,
L.
,
Saadi
,
B.
,
Wang
,
X. D.
,
Nouri
,
A.
,
Zaidat
,
K.
,
Belgacem-Bouzida
,
A.
,
Ayouni-Derouiche
,
L.
,
Raimondi
,
G.
, and
Fautrelle
,
Y.
,
2012
, “
Experimental Analysis of the Solidification of sn-3 wt.%pb Alloy Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
1986
1996
.10.1016/j.ijheatmasstransfer.2011.11.054
30.
Khairulin
,
R. A.
,
Stankus
,
S. V.
, and
Bezverkhy
,
P. P.
,
2000
, “
Study of the Binary Diffusion in Liquid Sn-Pb and Al-Ge Alloys by Measurement of the Melt Concentration
,”
J. Alloys Compd.
,
312
(
1–2
), pp.
211
218
.10.1016/S0925-8388(00)01154-3
31.
Hachani
,
L.
,
Zaidat
,
K.
, and
Fautrelle
,
Y.
,
2015
, “
Experimental Study of the Solidification of Sn-10 wt.%Pb Alloy Under Different Forced Convection in Benchmark Experiment
,”
Int. J. Heat Mass Transfer
,
85
, pp.
438
454
.10.1016/j.ijheatmasstransfer.2015.01.145
32.
Hachani
,
L.
,
Zaidat
,
K.
, and
Fautrelle
,
Y.
,
2016
, “
Multiscale Statistical Analysis of the Tin-Lead Alloy Solidification Process
,”
Int. J. Therm. Sci.
,
110
, pp.
186
205
.10.1016/j.ijthermalsci.2016.07.001
33.
Beckermann
,
C.
,
Gu
,
J.
, and
Boettinger
,
W.
,
2000
, “
Development of a Freckle Predictor Via Rayleigh Number Method for Single-Crystal Nickel-Base Superalloy Castings
,”
Metall. Mater. Trans. A
,
31
(
10
), pp.
2545
2557
.10.1007/s11661-000-0199-7
34.
Boussaa
,
R.
,
2014
, “
Study of the Influence of Natural Convection During the Solidification of Pure Metals and Binary Metal Alloys: Experiments and Simulations
,” Ph.D. thesis,
INSA University
,
Lyon, France
.
35.
Thresh
,
H.
, and
Crawley
,
A.
,
1970
, “
The Viscosities of Lead, Tin, and Pb-Sn Alloys
,”
Metall. Mater. Trans. B
,
1
(
6
), pp.
1531
1535
.10.1007/BF02641997
36.
Osipenko
,
V. P.
,
1970
, “
Thermal Conductivity of Alloys of the Systems Sn-Pb and Sn-in in the Solid and Liquid States
,”
Russ. Phys. J.
,
13
(
12
), pp.
1570
1573
.10.1007/BF00820108
37.
Prescott
,
P. J.
, and
Incropera
,
F. P.
,
1993
, “
Magnetically Damped Convection During Solidification of a Binary Metal Alloy
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
2
), pp.
302
310
.10.1115/1.2910680
38.
Jain
,
J.
,
Kumar
,
A.
, and
Dutta
,
P.
,
2007
, “
Numerical Studies on Channel Formation and Growth During Solidification: Effect of Process Parameters
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
4
), pp.
548
558
.10.1115/1.2709660
39.
Abdelhakem
,
A.
,
Hachani
,
L.
,
Zaidat
,
K.
,
Sari
,
I.
, and
Fautrelle
,
Y.
,
2021
, “
Experimental Study of the Effect of Intermittent Electromagnetic Stirring on the Columnar-Equiaxed Transition in Sn–10 wt.%Pb Alloy Solidiication
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
062401
.10.1115/1.4050408
40.
Hamzaoui
,
I.
,
Millet
,
S.
,
Botton
,
V.
,
Benzaoui
,
A.
,
Henry
,
D.
,
Hachani
,
L.
,
Boussaa
,
R.
,
Zaidat
,
K.
, and
Fautrelle
,
Y.
,
2019
, “
A 2D1/2 Model for Natural Convection and Solidification in a Narrow Enclosure
,”
Int. J. Therm. Sci.
,
140
(
290
), pp.
167
193
.10.1016/j.ijthermalsci.2019.02.028
41.
Martorano
,
M. A.
,
Beckermann
,
C.
, and
Gandin
,
C. A.
,
2003
, “
A Solutal Interaction Mechanism for the Columnar-to-Equiaxed Transition in Alloy Solidification
,”
Metall. Mater. Trans. A
,
34
(
8
), pp.
1657
1674
.10.1007/s11661-003-0311-x
42.
Worster
,
M. G.
,
1992
, “
Instabilities of the Liquid and Mushy Regions During Solidification of Alloys
,”
J. Fluid Dyn.
,
237
, pp.
649
669
.10.1017/S0022112092003562
43.
Kumar
,
A.
,
Dutta
,
P.
,
Sundarraj
,
S.
, and
Walker
,
M. J.
,
2007
, “
Remelting of Solid and Its Effect on Macrosegregation During Solidification
,”
Numer. Heat Transfer, Part A
,
51
(
1
), pp.
59
83
.10.1080/10407780600710391
44.
Worster
,
M.
, and
Wettlaufer
,
J.
,
1997
, “
Natural Convection, Solute Trapping, and Channel Formation During Solidification of Saltwater
,”
J. Phys. Chem. B
,
101
(
32
), pp.
6132
6136
.10.1021/jp9632448
You do not currently have access to this content.