Abstract

The aim of the article is to research the unsteady magnetohydrodynamic stagnation-point flow of fractional Oldroyd-B fluid over a stretched sheet. According to the distribution characteristics of pressure and magnetic field near the stagnation point, the momentum equation based on a fractional Oldroyd-B constitutive model is derived. Moreover, the modified fractional Fourier's law considering thermal relaxation-retardation time is proposed, which applies in both the energy equation and the boundary condition of convective heat transfer. A new finite difference scheme combined with the L1 algorithm is established to solve the governing equations, whose convergence is confirmed by constructing an exact solution. The results indicate that the larger relaxation parameters of velocity block the flow, yet the retardation parameters of velocity show the opposite trend. It is particularly worth mentioning that all the temperature profiles first go up slightly to a maximal value and then descend markedly, which presents the thermal retardation characteristic of Oldroyd-B fluid. Additionally, under the effects of temperature's retardation and relaxation parameters, the intersection of the profiles far away from stretching sheet demonstrates the thermal memory characteristic.

References

1.
Pan
,
J. F.
,
Xiao
,
C. F.
,
Huang
,
Y.
, and
Zhu
,
Z. T.
,
2020
, “
Preparation and Properties of Melt-Spun Poly(Fluorinated Ethylene-Propylene)/Graphene Composite Fibers
,”
Polym Compos.
,
41
(
1
), pp.
233
243
.10.1002/pc.25364
2.
Ojeda Mota
,
R. M.
,
Liu
,
N.
,
Kube
,
S. A.
,
Chay
,
J.
,
McClintock
,
H. D.
, and
Schroers
,
J.
,
2020
, “
Overcoming Geometric Limitations in Metallic Glasses Through Stretch Blow Molding
,”
Appl. Mater. Today
,
19
, p.
100567
.10.1016/j.apmt.2020.100567
3.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
, and
Pop
,
I.
,
2014
, “
Dual Solutions in Magnetohydrodynamic Stagnation-Point Flow and Heat Transfer Over a Shrinking Surface With Partial Slip
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
10
), p.
104501
.10.1115/1.4024592
4.
Hayat
,
T.
,
Waqas
,
M.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2013
, “
Mixed Convection Radiative Flow of Maxwell Fluid Near a Stagnation Point With Convective Condition
,”
J. Math-UK
,
29
(
3
), pp.
403
409
.10.1017/jmech.2013.6
5.
Abbas
,
Z.
,
Gull
,
F. T.
, and
Sajid
,
M.
,
2017
, “
Influence of Chemically Reacting Species in MHD Stagnation Point Flow of an Oldroyd-B Fluid With Partial Slip
,”
J. Braz. Soc. Mech. Sci.
,
39
(
6
), pp.
2159
2169
.10.1007/s40430-017-0726-8
6.
Suali
,
M.
,
Nik Long
,
N. M. A.
, and
Ishak
,
A.
,
2012
, “
Unsteady Stagnation Point Flow and Heat Transfer Over a Stretching/Shrinking Sheet With Prescribed Surface Heat Flux
,”
App. Math. Comp. Intel
.,
1
(
1
), pp.
1
11
.10.1155/2012/781845
7.
Dholey
,
S.
,
2018
, “
On the Fluid Dynamics of Unsteady Separated Stagnation-Point Flow of a Power-Law Fluid on the Surface of a Moving Flat Plate
,”
Eur. J. Mech. B-Fluid.
,
70
, pp.
102
114
.10.1016/j.euromechflu.2018.03.001
8.
Hayat
,
T.
,
Qayyum
,
S.
,
Waqas
,
M.
, and
Alsaedi
,
A.
,
2016
, “
Thermally Radiative Stagnation Point Flow of Maxwell Nanofluid Due to Unsteady Convectively Heated Stretched Surface
,”
J. Mol. Liq.
,
224
, pp.
801
810
.10.1016/j.molliq.2016.10.055
9.
Mahdy
,
A.
,
2018
, “
Modeling Unsteady Mixed Convection in Stagnation Point Flow of Oldroyd-B Nanofluid Along a Convective Heated Stretched Sheet
,”
J. Braz. Soc. Mech. Sci.
,
40
, p.
136
.10.1007/s40430-018-1052-5
10.
Hayat
,
T.
,
Qayyum
,
S.
,
Alsaedi
,
A.
, and
Waqas
,
M.
,
2016
, “
Simultaneous Influences of Mixed Convection and Nonlinear Thermal Radiation in Stagnation Point Flow of Oldroyd-B Fluid Towards an Unsteady Convectively Heated Stretched Surface
,”
J. Mol. Liq.
,
224
, pp.
811
817
.10.1016/j.molliq.2016.09.126
11.
Hayat
,
T.
,
Qayyum
,
S.
, and
Waqas
,
M.
,
2018
, “
Unsteady Stagnation Point Flow of Oldroyd-B Nanofluid With Heat Generation/Absorption and Nonlinear Thermal Radiation
,”
J. Braz. Soc. Mech. Sci.
,
40
(
2
), pp.
1
13
.10.1007/s40430-018-1007
12.
Moshkin
,
N. P.
,
Pukhnachev
,
V. V.
, and
Bozhkov
,
Y. D.
,
2019
, “
On the Unsteady, Stagnation Point Flow of a Maxwell Fluid in 2D
,”
Int. J. Nonlin. Mech.
,
116
, pp.
32
38
.10.1016/j.ijnonlinmec.2019.05.005
13.
Ahmed
,
A.
,
Khan
,
M.
,
Ahmed
,
J.
, and
Nadeem
,
S.
,
2020
, “
Mixed Convection in Unsteady Stagnation Point Flow of Maxwell Fluid Subject to Modified Fourier's Law
,”
Arab J. Sci. Eng.
,
45
(
11
), pp.
9439
9447
.10.1007/s13369-020-04724-y
14.
Ahmed
,
A.
,
Khan
,
M.
,
Ahmed
,
J.
,
Hafeez
,
A.
, and
Iqbal
,
Z.
,
2020
, “
Unsteady Stagnation Point Flow of Maxwell Nanofluid Over Stretching Disk With Joule Heating
,”
Arab. J. Sci. Eng
,.,
45
(
7
), pp.
5529
5540
.10.1007/s13369-020-04468-9
15.
Hernández-Jiménez
,
A.
,
Hernández-Santiago
,
J.
,
Macias-Garcı́a
,
A.
, and
Sánchez-González
,
J.
,
2002
, “
Relaxation Modulus in PMMA and PTFE Fitting by Fractional Maxwell Model
,”
Polym. Test
,
21
(
3
), pp.
325
331
.10.1016/S0142-9418(01)00092-7
16.
Qi
,
H. T.
, and
Xu
,
M. Y.
,
2007
, “
Stokes' First Problem for a Viscoelastic Fluid With the Generalized Oldroyd-B Model
,”
Acta Mech. Sinice-PRC
,
23
(
5
), pp.
463
469
.10.1007/s10409-007-0093-2
17.
Zheng
,
L.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2012
, “
Slip Effects on MHD Flow of a Generalized Oldroyd-B Fluid With Fractional Derivative
,”
Nonlinear Anal-Real.
,
13
(
2
), pp.
513
523
.10.1016/j.nonrwa.2011.02.016
18.
Bose
,
D.
, and
Basu
,
U.
,
2015
, “
Unsteady Incompressible Flow of a Generalized Oldroyd-B Fluid Between Two Oscillating Infinite Parallel Plates in Presence of a Transverse Magnetic Field
,”
Appl. Math.
,
06
(
1
), pp.
106
115
.10.4236/am.2015.61011
19.
Raza
,
N.
,
Haq
,
E. U.
,
Rashidi
,
M. M.
,
Awan
,
A. U.
, and
Abdullah
,
M.
,
2017
, “
Oscillating Motion of an Oldroyd-B Fluid With Fractional Derivatives in a Circular Cylinder
,”
J. Appl. Fluid Mech.
,
10
(
5
), pp.
1421
1426
.10.18869/acadpub.jafm.73.242.27079
20.
Zhao
,
J. H.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Liu
,
F. W.
,
2018
, “
Unsteady Convection Heat and Mass Transfer of a Fractional Oldroyd-B Fluid With Chemical Reaction and Heat Source/Sink Effect
,”
Heat Transfer Res.
,
49
(
13
), pp.
1231
1246
.10.1615/HeatTransRes.2018019878
21.
Cattaneo
,
C.
,
1948
, “
Sulla Conduzione Del Calore
,”
Atti del Seminario Matematico e Fisico dell'Universita di Modena e Reggio Emilia
, Vol.
3
, University of Modena, Rome, Italy, pp.
83
101
.
22.
Christov
,
C. I.
,
2009
, “
On Frame Indifferent Formulation of the Maxwell-Cattaneo Model of Finite-Speed Heat Conduction
,”
Mech. Res. Commun.
,
36
(
4
), pp.
481
486
.10.1016/j.mechrescom.2008.11.003
23.
Sherief
,
H. H.
,
El-Sayed
,
A. M. A.
, and
Abd El-Latief
,
A. M.
,
2010
, “
Fractional Order Theory of Thermoelasticity
,”
Int. J. Solids Struct.
,
47
(
2
), pp.
269
275
.10.1016/j.ijsolstr.2009.09.034
24.
Li
,
C.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Chen
,
G.
,
2016
, “
Flow and Heat Transfer of a Generalized Maxwell Fluid With Modified Fractional Fourier's Law and Darcy's Law
,”
Comput. Fluids
,
125
, pp.
25
38
.10.1016/j.compfluid.2015.10.021
25.
Bai
,
Y.
,
Huo
,
L. M.
,
Zhang
,
Y.
, and
Jiang
,
Y. H.
,
2019
, “
Flow, Heat and Mass Transfer of Three-Dimensional Fractional Maxwell Fluid Over a Bidirectional Stretching Plate With Fractional Fourier's Law and Fractional Fick's Law
,”
Comput. Math. Appl.
,
78
(
8
), pp.
2831
2846
.10.1016/j.camwa.2019.04.027
26.
Ezzat
,
M. A.
,
2011
, “
Theory of Fractional Order in Generalized Thermoelectric MHD
,”
Appl. Math. Model.
,
35
(
10
), pp.
4965
4978
.10.1016/j.apm.2011.04.004
27.
Zhao
,
J. H.
,
Zheng
,
L. C.
,
Chen
,
X. H.
,
Zhang
,
X. X.
, and
Liu
,
F. W.
,
2017
, “
Unsteady Marangoni Convection Heat Transfer of Fractional Maxwell Fluid With Cattaneo Heat Flux
,”
Appl. Math. Model.
,
44
(
1
), pp.
497
507
.10.1016/j.apm.2017.02.021
28.
Zhang
,
Y.
,
Yuan
,
B.
,
Bai
,
Y.
,
Cao
,
Y. J.
, and
Shen
,
Y. P.
,
2018
, “
Unsteady Cattaneo-Christov Double Diffusion of Oldroyd-B Fluid Thin Film With Relaxation-Retardation Viscous Dissipation and Relaxation Chemical Reaction
,”
Powder Technol.
,
338
, pp.
975
982
.10.1016/j.powtec.2018.07.049
29.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
30.
Ming
,
C.
,
Liu
,
F.
,
Zheng
,
L.
,
Turner
,
I.
, and
Anh
,
V.
,
2016
, “
Analytical Solutions of Multi-Term Time Fractional Differential Equations and Application to Unsteady Flows of Generalized Viscoelastic Fluid
,”
Comput. Math. Appl.
,
72
(
9
), pp.
2084
2097
.10.1016/j.camwa.2016.08.012
31.
Zhao
,
J. H.
,
2020
, “
Finite Volume Method for Fractional Maxwell Viscoelastic Fluid Over a Moving Plate With Convective Boundary Condition
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
11
), p.
111802
.10.1115/1.4047644
32.
Liu
,
Y. Q.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
,
2011
, “
Unsteady MHD Couette Flow of a Generalized Oldroyd-B Fluid With Fractional Derivative
,”
Comput. Math. Appl.
,
61
(
2
), pp.
443
450
.10.1016/j.camwa.2010.11.021
33.
Liu
,
F. W.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
,
2007
, “
Stability and Convergence Next Term of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
,
191
(
1
), pp.
12
20
.10.1016/j.amc.2006.08.162
34.
Liu
,
F. W.
,
Anh
,
V.
, and
Turner
,
I.
,
2004
, “
Numerical Solution of the Space Fractional Fokker–Planck Equation
,”
J. Comput. Appl. Math.
,
166
(
1
), pp.
209
219
.10.1016/j.cam.2003.09.028
35.
Chen
,
S.
,
Liu
,
F.
,
Zhuang
,
P.
, and
Anh
,
V.
,
2009
, “
Finite Difference Approximations for the Fractional Fokker–Planck Equation
,”
Appl. Math. Model.
,
33
(
1
), pp.
256
273
.10.1016/j.apm.2007.11.005
36.
Chen
,
J.
,
Liu
,
F.
,
Anh
,
V.
,
Shen
,
S.
,
Liu
,
Q.
, and
Liao
,
C.
,
2012
, “
The Analytical Solution and Numerical Solution of the Fractional Diffusion-Wave Equation With Damping
,”
Appl. Math. Comput.
,
219
(
4
), pp.
1737
1748
.10.1016/j.amc.2012.08.014
37.
Ye
,
H.
,
Liu
,
F. W.
, and
Anh
,
V.
,
2015
, “
Compact Difference Scheme for Distributed-Order Time-Fractional Diffusion-Wave Equation on Bounded Domains
,”
J. Comput. Phys.
,
298
, pp.
652
660
.10.1016/j.jcp.2015.06.025
38.
Liu
,
L.
,
Zheng
,
L.
,
Chen
,
Y.
, and
Liu
,
F.
,
2018
, “
Fractional Boundary Layer Flow and Heat Transfer Over a Stretching Sheet With Variable Thickness
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
9
), p.
091701
.10.1115/1.4039765
You do not currently have access to this content.