Abstract

Experimental analysis of stratification, electromagnetic stirring (EMS), and solidification were carried out for two solidification experiments for a binary Sn–10 wt % Pb alloy. The objective of this study is to examine the effect of forced convection driven by an intermittent traveling magnetic field on the solidification process. Several aspects were investigated, namely, thermal field, macrostructure, and finally segregation behavior, as well as morphology. The effect of the both thermal and solutal stratification on the intensity of the flow is discussed yet showed that stratification has a stabilizing effect for the flow, which can also slow the convective hydrodynamic movements generated by the buoyancy forces. The consequence of this stratification on macrosegregations and channel segregation, which develop during the solidification period, is experimentally analyzed. EMS by intermittent traveling magnetic promotes the development of the columnar-equiaxed transition mechanism (CET), more particularly the refinement of the grain size. The results illustrate, also, that EMS effectively diminish macrosegregations significantly, while remaining inactive for reducing channels segregation development.

References

1.
Sarazin
,
J. R.
, and
Hellawell
,
A.
,
1988
, “
Channel Formation in Pb–Sn, Pb–Sb, and Pb–Sn–SbAlloy Ingots and Comparison With the System NH4CI–H2O
,”
Metall. Trans. A
,
19
(
7
), pp.
1861
1871
.10.1007/BF02645156
2.
Hebditch
,
D. J.
, and
Hunt
,
J. D.
,
1973
, “
Fluid Motion Within the Partially Solid Region of a Casting
,”
Metall. Trans.
,
B
(
4
), pp.
2008
2010
. 10.1007/BF02665441
3.
Campanella
,
T.
,
Charbon
,
C.
, and
Rappaz
,
M.
,
2004
, “
Grain Refinement Induced by Electromagnetic Stirring: A Dendrite Fragmentation Criterion
,”
Metall. Mater. Trans. A
,
35
(
10
), pp.
3201
3210
.10.1007/s11661-004-0064-1
4.
Gao
,
J. W.
, and
Wang
,
C. Y.
,
1999
, “
An Experimental Investigation Into the Effects of Grain Transport on Columnar to Equiaxed Transition During Dendritic Alloy Solidification
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
430
437
.10.1115/1.2825996
5.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1205
1219
.10.1115/1.3250621
6.
Brabazon
,
D.
,
Browne
,
D. J.
, and
Carr
,
A. J.
,
2002
, “
Mechanical Stir Casting of Aluminium Alloys From the Mushy State: Process, Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
326
(
2
), pp.
370
381
.10.1016/S0921-5093(01)01832-9
7.
Fan
,
Z.
,
2002
, “
Semisolid Metal Processing
,”
Int. Mater. Rev.
,
47
(
2
), pp.
49
85
.10.1179/095066001225001076
8.
Asai
,
S.
,
2000
, “
Recent Development and Prospect of Electromagnetic Processing of Materials
,”
Sci. Technol. Adv. Mater
,
1
(
4
), pp.
191
200
.10.1016/S1468-6996(00)00016-4
9.
Yang
,
Z.
,
Seo
,
P. K.
, and
Kang
,
C. G.
,
2005
, “
Grain Size Control of Semisolid A356 Alloy Manufactured by Electromagnetic Stirring
,”
J. Mater. Sci. Technol.
,
21
(
2
), pp.
219
225
.https://jmst.org/EN/Y2005/V21/I02/219
10.
Davidson
,
P.
,
1999
, “
Magnetohydrodynamics in Materials Processing
,”
Annu. Rev. Fluid. Mech.
,
31
(
1
), pp.
273
300
.10.1146/annurev.fluid.31.1.273
11.
Prescott
,
P. J.
, and
Incropera
,
F. P.
,
1995
, “
The Effect of Turbulence on Solidification of a Binary Metal Alloy With Electromagnetic Stirring
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
716
724
.10.1115/1.2822635
12.
Haghayeghi
,
R.
, and
Kapranos
,
P.
,
2014
, “
Solidification of Pb-Sn Alloys Under Ultrasonic Field
,”
Mater. Lett.
,
126
, pp.
244
248
.10.1016/j.matlet.2014.04.007
13.
Shu
,
D.
,
Sun
,
B.
,
Mi
,
J.
, and
Grant
,
P.
,
2012
, “
A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation
,”
Metall. Mater. Trans. A
,
43
(
10
), pp.
3755
3766
.10.1007/s11661-012-1188-3
14.
Vives
,
C.
,
1986
, “
Solidification of Tin in the Presence of Electric and Magnetic Field
,”
J. Cryst. Growth
,
76
, pp.
170
184
.10.1016/0022-0248(86)90022-9
15.
Desnain
,
P.
,
Durand
,
F.
,
Bloch
,
D.
,
Fautrelle
,
Y.
,
Meyer
,
J. L.
, and
Riquet
,
J. P.
,
1988
, “
Effects of the Electromagnetic Stirring on the Grain Size of Industrial Aluminium Alloys: Experiments and Theoretical Predictions, Light Metals 1988
,”
Met. Soc. AIME
,
1987
, pp.
457
494
.
16.
Johnston
,
W. C.
,
Kotler
,
G. R.
, and
Tiller
,
W. A.
,
1963
, “
The Influence of Electromagnetic Stirring on the Nucleation of Tin and Tin–Lead Alloy
,”
Trans. Metall. Soc. AIME
,
227
, pp.
890
896
.
17.
Johnston
,
W. C.
,
Kotler
,
G. R.
, and
Tiller
,
W. A.
,
1965
, “
Grain Refinement Via Electromagnetic Stirring During Solidification
,”
Trans. Metall. Soc. AIME
,
233
, pp.
1856
1960
.
18.
Morris
,
J. W.
,
2001
, “
The Influence of Grain Size on the Mechanical Properties of Steel
,”
Proceedings of International Symposium on Ultrafine Grained Steels
, Japan, Tokyo, Iron and Steel Institute, pp.
34
41
.10.2172/861397
19.
Hachani
,
L.
,
Zaidat
,
K.
, and
Fautrelle
,
Y.
,
2015
, “
Experimental Study of the Solidification of Sn–10 wt.%Pb Alloy Under Different Forced Convection in Benchmark Experiment
,”
Int. J. Heat Mass Transfer
,
85
, pp.
438
454
.10.1016/j.ijheatmasstransfer.2015.01.145
20.
Boussaa
,
R.
,
Hachani
,
L.
,
Budenkova
,
O.
,
Botton
,
V.
,
Henry
,
D.
,
Zaidat
,
K.
,
Ben Hadid
,
H.
, and
Fautrelle
,
Y.
,
2016
, “
Macrosegregations in Sn-3 wt%Pb Alloy Solidification: Experimental and 3D Numerical Simulation Investigations
,”
Int. J. Heat Mass Transfer
,
100
, pp.
680
690
.10.1016/j.ijheatmasstransfer.2016.04.120
21.
Hachani
,
L.
,
Zaidat
,
K.
, and
Fautrelle
,
Y.
,
2016
, “
Multiscale Statistical Analysis of the Tin-Lead Alloy Solidification Process
,”
Int. J. Therm. Sci.
,
110
, pp.
186
205
.10.1016/j.ijthermalsci.2016.07.001
22.
Hebditch
,
D.
, and
Hunt
,
J. D.
,
1974
, “
Observations of Ingot Macrosegregation on Model Systems
,”
Metall. Mater. Trans. B
,
5
(
7
), pp.
1557
1564
.10.1007/BF02646326
23.
Wang
,
X. D.
,
Fautrelle
,
Y.
,
Etay
,
J.
, and
Moreau
,
R.
,
2008
, “
A Periodically Reversed Flow Driven by a Modulated Traveling Magnetic Field—Part I: Experiments With Ga–In–Sn
,”
Metall. Mater. Trans. B
,
40
(
1
), pp.
82
90
.10.1007/s11663-008-9176-0
24.
Wang
,
X. D.
,
Fautrelle
,
Y.
,
Etay
,
J.
, and
Moreau
,
R.
,
2009
, “
A Periodically Reversed Flow Driven by a Modulated Traveling Magnetic Field—Part II: Theoretical Model
,”
Metall. Mater. Trans. B
,
40
(
1
), pp.
104
113
.10.1007/s11663-008-9210-2
25.
Hachani
,
L.
,
Saadi
,
B.
,
Wang
,
X. D.
,
Nouri
,
A.
,
Zaidat
,
K.
,
Belgacem-Bouzida
,
A.
,
Ayouni-Derouiche
,
L.
,
Raimondi
,
G.
, and
Fautrelle
,
Y.
,
2012
, “
Experimental Analysis of the Solidification of Sn-3 wt.%Pb Alloy Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
1986
1996
.10.1016/j.ijheatmasstransfer.2011.11.054
26.
Gu
,
J. P.
,
Beckermann
,
C.
, and
Giamei
,
A. F.
,
1997
, “
Motion and Remelting of Dendrite Fragments During Directional Solidification of a Nickel-Base Superalloy
,”
Metall. Mat. Trans. A
,
28
(
7
), pp.
1533
1542
.10.1007/s11661-997-0215-2
27.
Li
,
Q.
, and
Beckermann
,
C.
,
2002
, “
Modeling of Free Dendritic Growth of Succinonitrile Acetone Alloys With Thermosolutal Melt Convection
,”
J. Crystal Growth
,
236
, p.
432
.10.1016/S0022-0248(01)02390-9
28.
Hellawell
,
A.
,
Sarazin
,
J. R.
, and
Steube
,
R. S.
,
1993
, “
Channel Convection in Partly Solidified Systems
,”
Philos. Trans. R. Soc. London, Ser. A
,
345
, p.
507
.10.1098/rsta.1993.0143
29.
Moreau
,
R.
,
1999
, “
The Fundamental of MHD Related to Crystal Growth
,”
Prog. Cryst. Growth Charact. Mater.
,
38
(
1–4
), pp.
161
194
.10.1016/S0960-8974(99)00011-X
30.
Ludwig
,
A.
,
Wu
,
M.
, and
Kharicha
,
A.
,
2015
, “
On Macrosegregation
,”
Metall. Mater. Trans. A
,
46
(
11
), pp.
4854
4867
.10.1007/s11661-015-2959-4
You do not currently have access to this content.