Abstract

A three-dimensional (3D) numerical investigation is carried out to examine the effect of magnetic field (MF) on laminar forced convection of ferrofluids. Laminar flow (Reynolds number (Re) ≤ 100) of ferrofluid is modeled in a square mini-channel of 2 mm hydraulic diameter in the presence of the MF. A magnetic force is induced in ferrofluids because of the applied MF, which accelerates the upstream flow and decelerates the downstream flow with respect to the magnet's location. The acceleration/deceleration of the flow disrupts the hydrodynamic and thermal boundary layers (BLs), positively affecting the heat transfer. The extent of magnetic influence primarily depends on the Reynolds number and induced magnetic force. At low Re (= 25), where magnetic force dominates over inertial force, the flow of ferrofluid is strongly affected by the MF. This results in a higher augmentation in convective heat transfer. As the Re of the flow is increased to Re = 75, the inertial forces partially overcome the effect of the magnetic force, resulting in a smaller augmentation. The interaction of magnetic and inertia forces is expressed through a dimensionless magnetic Froude number (Frm). The effect of volumetric concentration of nanoparticles, Reynolds number, and the presence of multiple magnets placed along the flow channel on heat transfer is investigated through a parametric study. A correlation has also been proposed to predict the net enhancement in the Nusselt number due to the application of the MF based on the results of the present study.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
Argonne National Lab
, Argonne,
IL
.
2.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
, Hoboken,
NJ
.
3.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
4.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
5.
Haddad
,
Z.
,
Oztop
,
H. F.
,
Abu-Nada
,
E.
, and
Mataoui
,
A.
,
2012
, “
A Review on Natural Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5363
5378
.10.1016/j.rser.2012.04.003
6.
Tawfik
,
M. M.
,
2017
, “
Experimental Studies of Nanofluid Thermal Conductivity Enhancement and Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
1239
1253
.10.1016/j.rser.2016.11.111
7.
Huminic
,
G.
, and
Huminic
,
A.
,
2012
, “
Application of Nanofluids in Heat Exchangers: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5625
5638
.10.1016/j.rser.2012.05.023
8.
Mahdi
,
R. A.
,
Mohammed
,
H. A.
,
Munisamy
,
K. M.
, and
Saeid
,
N. H.
,
2015
, “
Review of Convection Heat Transfer and Fluid Flow in Porous Media With Nanofluid
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
715
734
.10.1016/j.rser.2014.08.040
9.
Kasaeian
,
A.
,
Daneshazarian
,
R.
,
Mahian
,
O.
,
Kolsi
,
L.
,
Chamkha
,
A. J.
,
Wongwises
,
S.
, and
Pop
,
I.
,
2017
, “
Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments
,”
Int. J. Heat Mass Transfer
,
107
, pp.
778
791
.10.1016/j.ijheatmasstransfer.2016.11.074
10.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
280
.10.1186/1556-276X-6-280
11.
Fang
,
X.
,
Wang
,
R.
,
Chen
,
W.
,
Zhang
,
H.
, and
Ma
,
C.
,
2015
, “
A Review of Flow Boiling Heat Transfer of Nanofluids
,”
Appl. Therm. Eng.
,
91
, pp.
1003
1017
.10.1016/j.applthermaleng.2015.08.100
12.
Yao
,
S.
, and
Teng
,
Z.
,
2019
, “
Effect of Nanofluids on Boiling Heat Transfer Performance
,”
Appl. Sci.
,
9
(
14
), p.
2818
.10.3390/app9142818
13.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
14.
Liu
,
Z.-H.
, and
Li
,
Y.-Y.
,
2012
, “
A New Frontier of Nanofluid Research—Application of Nanofluids in Heat Pipes
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6786
6797
.10.1016/j.ijheatmasstransfer.2012.06.086
15.
Poplaski
,
L. M.
,
Benn
,
S. P.
, and
Faghri
,
A.
,
2017
, “
Thermal Performance of Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
107
, pp.
358
371
.10.1016/j.ijheatmasstransfer.2016.10.111
16.
Rosensweig
,
R. E.
,
1985
,
Ferrohydrodynamics
,
Cambridge University Press
,
Cambridge, UK
.
17.
Odenbach
,
S.
,
2009
,
Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids
,
Springer-Verlag
,
Berlin
.
18.
Scherer
,
C.
, and
Figueiredo Neto
,
A. M.
,
2005
, “
Ferrofluids: Properties and Applications
,”
Braz. J. Phys.
,
35
(
3a
), pp.
718
727
.10.1590/S0103-97332005000400018
19.
Torres-Díaz
,
I.
, and
Rinaldi
,
C.
,
2014
, “
Recent Progress in Ferrofluids Research: Novel Applications of Magnetically Controllable and Tunable Fluids
,”
Soft Matter
,
10
(
43
), pp.
8584
8602
.10.1039/C4SM01308E
20.
Shah
,
R. K.
, and
Khandekar
,
S.
,
2020
, “
Manipulation of Taylor Bubble Flow in a Magneto-Fluidic System
,”
Colloids Surf. A
,
593
, p.
124589
.10.1016/j.colsurfa.2020.124589
21.
Raj
,
K.
, and
Moskowitz
,
R.
,
1990
, “
Commercial Applications of Ferrofluids
,”
J. Magn. Magn. Mater.
,
85
(
1–3
), pp.
233
245
.10.1016/0304-8853(90)90058-X
22.
Makhoul-Mansour
,
M.
,
Challita
,
E. J.
, and
Freeman
,
E. C.
, “
Ferrofluid Droplet Based Micro-Magnetic Sensors and Actuators
,”
ASME
Paper No. SMASIS2017-3841.10.1115/SMASIS2017-3841
23.
Liu
,
Q.
,
Alazemi
,
S. F.
,
Daqaq
,
M. F.
, and
Li
,
G.
,
2018
, “
A Ferrofluid Based Energy Harvester: Computational Modeling, Analysis, and Experimental Validation
,”
J. Magn. Magn. Mater.
,
449
, pp.
105
118
.10.1016/j.jmmm.2017.09.064
24.
Khairul
,
M. A.
,
Doroodchi
,
E.
,
Azizian
,
R.
, and
Moghtaderi
,
B.
,
2017
, “
Advanced Applications of Tunable Ferrofluids in Energy Systems and Energy Harvesters: A Critical Review
,”
Energy Convers. Manag.
,
149
, pp.
660
674
.10.1016/j.enconman.2017.07.064
25.
Nguyen
,
N.-T.
,
2012
, “
Micro-Magnetofluidics: Interactions Between Magnetism and Fluid Flow on the Microscale
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
1
16
.10.1007/s10404-011-0903-5
26.
Yang
,
R.-J.
,
Hou
,
H.-H.
,
Wang
,
Y.-N.
, and
Fu
,
L.-M.
,
2016
, “
Micro-Magnetofluidics in Microfluidic Systems: A Review
,”
Sens. Actuators B
,
224
, pp.
1
15
.10.1016/j.snb.2015.10.053
27.
Leidong
,
M.
, and
Hur
,
K.
,
2006
, “
Towards Ferrofluidics for μ-TAS and Lab on-a-Chip Applications
,”
Nanotechnology
,
17
(
4
), p.
S34
.
28.
Ganguly
,
R.
, and
Puri
,
I. K.
,
2010
, “
Microfluidic Transport in Magnetic MEMS and BioMEMS
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
,
2
(
4
), pp.
382
399
.10.1002/wnan.92
29.
Shima
,
P. D.
, and
Philip
,
J.
,
2011
, “
Tuning of Thermal Conductivity and Rheology of Nanofluids Using an External Stimulus
,”
J. Phys. Chem. C
,
115
(
41
), pp.
20097
20104
.10.1021/jp204827q
30.
Philip
,
J.
, and
Shima
,
P. D.
,
2012
, “
Thermal Properties of Nanofluids
,”
Adv. Colloid Interface Sci.
,
183–184
, pp.
30
45
.10.1016/j.cis.2012.08.001
31.
Gavili
,
A.
,
Zabihi
,
F.
,
Isfahani
,
T. D.
, and
Sabbaghzadeh
,
J.
,
2012
, “
The Thermal Conductivity of Water Base Ferrofluids Under Magnetic Field
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
94
98
.10.1016/j.expthermflusci.2012.03.016
32.
Alsaady
,
M.
,
Fu
,
R.
,
Li
,
B.
,
Boukhanouf
,
R.
, and
Yan
,
Y.
,
2015
, “
Thermo-Physical Properties and Thermo-Magnetic Convection of Ferrofluid
,”
Appl. Therm. Eng.
,
88
, pp.
14
21
.10.1016/j.applthermaleng.2014.09.087
33.
Mousavi
,
N. S. S.
, and
Kumar
,
S.
,
2018
, “
Effective in-Field Thermal Conductivity of Ferrofluids
,”
J. Appl. Phys.
,
123
(
4
), p.
043902
.10.1063/1.5010275
34.
Nkurikiyimfura
,
I.
,
Wang
,
Y.
, and
Pan
,
Z.
,
2013
, “
Heat Transfer Enhancement by Magnetic Nanofluids—A Review
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
548
561
.10.1016/j.rser.2012.12.039
35.
Bahiraei
,
M.
, and
Hangi
,
M.
,
2015
, “
Flow and Heat Transfer Characteristics of Magnetic Nanofluids: A Review
,”
J. Magn. Magn. Mater.
,
374
, pp.
125
138
.10.1016/j.jmmm.2014.08.004
36.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Narmani Kahnamouei
,
Y.
,
2011
, “
A 3D Numerical Simulation of Mixed Convection of a Magnetic Nanofluid in the Presence of Non-Uniform Magnetic Field in a Vertical Tube Using Two Phase Mixture Model
,”
J. Magn. Magn. Mater.
,
323
(
15
), pp.
1963
1972
.10.1016/j.jmmm.2011.02.039
37.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Ahangar Zonouzi
,
S.
,
2013
, “
Numerical Study of the Ferrofluid Flow and Heat Transfer Through a Rectangular Duct in the Presence of a Non-Uniform Transverse Magnetic Field
,”
J. Magn. Magn. Mater.
,
327
, pp.
31
42
.10.1016/j.jmmm.2012.09.011
38.
Azizian
,
R.
,
Doroodchi
,
E.
,
McKrell
,
T.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Moghtaderi
,
B.
,
2014
, “
Effect of Magnetic Field on Laminar Convective Heat Transfer of Magnetite Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
94
109
.10.1016/j.ijheatmasstransfer.2013.09.011
39.
Yarahmadi
,
M.
,
Moazami Goudarzi
,
H.
, and
Shafii
,
M. B.
,
2015
, “
Experimental Investigation Into Laminar Forced Convective Heat Transfer of Ferrofluids Under Constant and Oscillating Magnetic Field With Different Magnetic Field Arrangements and Oscillation Modes
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
601
611
.10.1016/j.expthermflusci.2015.07.002
40.
Goharkhah
,
M.
,
Ashjaee
,
M.
, and
Jamali
,
J.
,
2015
, “
Experimental Investigation on Heat Transfer and Hydrodynamic Behavior of Magnetite Nanofluid Flow in a Channel With Recognition of the Best Models for Transport Properties
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
582
592
.10.1016/j.expthermflusci.2015.05.013
41.
Goharkhah
,
M.
,
Ashjaee
,
M.
, and
Shahabadi
,
M.
,
2016
, “
Experimental Investigation on Convective Heat Transfer and Hydrodynamic Characteristics of Magnetite Nanofluid Under the Influence of an Alternating Magnetic Field
,”
Int. J. Therm. Sci.
,
99
, pp.
113
124
.10.1016/j.ijthermalsci.2015.08.008
42.
Asfer
,
M.
,
Mehta
,
B.
,
Kumar
,
A.
,
Khandekar
,
S.
, and
Panigrahi
,
P. K.
,
2016
, “
Effect of Magnetic Field on Laminar Convective Heat Transfer Characteristics of Ferrofluid Flowing Through a Circular Stainless Steel Tube
,”
Int. J. Heat Fluid Flow
,
59
, pp.
74
86
.10.1016/j.ijheatfluidflow.2016.01.009
43.
Fadaei
,
F.
,
Shahrokhi
,
M.
,
Molaei Dehkordi
,
A.
, and
Abbasi
,
Z.
,
2017
, “
Heat Transfer Enhancement of Fe3O4 Ferrofluids in the Presence of Magnetic Field
,”
J. Magn. Magn. Mater.
,
429
, pp.
314
323
.10.1016/j.jmmm.2017.01.046
44.
Wang
,
J.
,
Li
,
G.
,
Zhu
,
H.
,
Luo
,
J.
, and
Sundén
,
B.
,
2019
, “
Experimental Investigation on Convective Heat Transfer of Ferrofluids Inside a Pipe Under Various Magnet Orientations
,”
Int. J. Heat Mass Transfer
,
132
, pp.
407
419
.10.1016/j.ijheatmasstransfer.2018.12.023
45.
Shyam
,
S.
,
Mehta
,
B.
,
Mondal
,
P. K.
, and
Wongwises
,
S.
,
2019
, “
Investigation Into the Thermo-Hydrodynamics of Ferrofluid Flow Under the Influence of Constant and Alternating Magnetic Field by InfraRed Thermography
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1233
1247
.10.1016/j.ijheatmasstransfer.2019.02.050
46.
Bahiraei
,
M.
,
Hangi
,
M.
, and
Rahbari
,
A.
,
2019
, “
A Two-Phase Simulation of Convective Heat Transfer Characteristics of Water–Fe3O4 Ferrofluid in a Square Channel Under the Effect of Permanent Magnet
,”
Appl. Therm. Eng.
,
147
, pp.
991
997
.10.1016/j.applthermaleng.2018.11.011
47.
Shah
,
R. K.
, and
Khandekar
,
S.
,
2019
, “
Exploring Ferrofluids for Heat Transfer Augmentation
,”
J. Magn. Magn. Mater.
,
475
, pp.
389
400
.10.1016/j.jmmm.2018.11.034
48.
Ferrotec Corporation
, 2015, “Water-Based EMG-Series Ferrofluids,” Bedford, NH, accessed Dec. 1, 2019, https://ferrofluid.ferrotec.com/products/ferrofluid-emg/water
49.
Frei
,
W.
,
2016
, “
Keeping Track of Element Order in Multiphysics Models
,” COMSOL Blog, Burlington, MA, accessed Mar. 1, 2019, https://www.comsol.com/blogs/keeping-track-of-element-order-in-multiphysics-models
50.
Stute
,
B.
,
Krupp
,
V.
, and
von Lieres
,
E.
,
2013
, “
Performance of Iterative Equation Solvers for Mass Transfer Problems in Three-Dimensional Sphere Packings in COMSOL
,”
Simul. Model. Pract. Theory
,
33
, pp.
115
131
.10.1016/j.simpat.2012.10.004
51.
Frei
,
W.
,
2013
, “
Solving Multiphysics Problems
,” COMSOL Blog, Burlington, MA, accessed Mar. 1, 2019, https://www.comsol.com/blogs/solving-multiphysics-problems
52.
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
53.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
.10.1016/j.cap.2008.12.047
54.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
, pp.
78
152
.
55.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection With Uniform Heating in Flow Over a Plate and in Developing and Fully Developed Flow in a Tube
,”
ASME J. Heat Transfer
,
95
(
1
), pp.
78
84
.10.1115/1.3450009
You do not currently have access to this content.