Abstract

An inverse heat transfer model based on Salp Swarm optimization algorithm is developed for prediction of heat flux at the hot faces of a mold in thin slab continuous casting. The industrial mold considered in this work is a funnel-shaped mold having complex arrangement of cooling slots and holes. Significant variations of heat flux along the casting direction, as well as across the width are observed. Subsequently, the obtained heat flux profile estimated by the inverse method is used to analyze the fluid flow and thermal characteristics of the solidifying steel strand inside the mold. Three different recirculatory zones are present due to molten steel flow, affecting the thermal and solidification characteristics significantly. The effect of these recirculatory flows on remelting phenomenon, and consequent formation of thinner shell at the mold outlet leading to quality control issues in the casting process have been discussed. Another practical issue of depression in the wide face shell thickness at the mold outlet has been identified, and its cause has been related to the location of the submerged entry nozzle and the high speed of the molten steel inflow.

References

1.
Jin
,
X.
,
Rng
,
T.
, and
Guan
,
J.
,
2009
, “
Thermo-Mechanical FEM Analysis on Crack Prediction of Solidified Shell in Funnel-Shaped Mold
,”
2009 International Conference on Measuring Technology and Mechatronics Automation
,
IEEE
, Zhangjiajie, China, Apr. 11–12, pp.
160
163
.10.1109/ICMTMA.2009.106
2.
Hibbeler
,
L. C.
,
Thomas
,
B. G.
,
Schimmel
,
R. C.
, and
Abbel
,
G.
,
2012
, “
The Thermal Distortion of a Funnel Mold
,”
Metall. Mater. Trans. B
,
43
(
5
), pp.
1156
1172
.10.1007/s11663-012-9696-5
3.
OConnor
,
T. G.
, and
Dantzig
,
J. A.
,
1994
, “
Modeling the Thin-Slab Continuous-Casting Mold
,”
Metall. Mater. Trans. B
,
25
(
3
), pp.
443
457
.10.1007/BF02663395
4.
Liu
,
H.
,
Zhang
,
H.
, and
Gan
,
Y.
,
2008
, “
Prediction of Local Heat Flux and Temperature Distribution in a Mould Copper Plate for Flexible Thin Slab Casting Based on in-Plant Temperature Measurements
,”
Steel Res. Int.
,
79
(
11
), pp.
843
851
.10.1002/srin.200806209
5.
Yan
,
Z.
,
Cheng
,
S. S.
, and
Cheng
,
Z. J.
,
2014
, “
Study on Temperature Field for Copper Plate Funnel Shape Mould
,”
Ironmak. Steelmak.
,
41
(
3
), pp.
206
212
.10.1179/1743281213Y.0000000121
6.
Niu
,
Z.
,
Cai
,
Z.
, and
Zhu
,
M.
,
2019
, “
Heat Transfer Behaviour of Funnel Mould Copper Plates During Thin Slab Continuous Casting and Channel Structure Optimization
,”
Ironmak. Steelmak.
,
47
(
10
), pp.
1135
1147
.10.1080/03019233.2019.1674590
7.
Yoon
,
U. S.
,
Park
,
J.
,
Thomas
,
B. G.
, and
Samarasekera
,
I. V.
,
2002
, “
Mold Crack Formation of the Funnel Shaped Mold During Thin Slab Casting
,”
85th Steelmaking Conference Proceedings
, ISS-AIME, Warrendale, PA, pp.
245
257
.
8.
Savage
,
J.
, and
Pritchard
,
W. H.
,
1954
, “
The Problem of Rupture .of Billet in the Continuous Casting of Steel
,”
Tetsu-to-Hagane
,
178
(
11
), pp.
269
277
.
9.
Sun
,
Y.
,
Ni
,
Y.
,
Wang
,
H.
,
Xu
,
Z.
, and
Cai
,
K.
,
2010
, “
Longitudinal Surface Cracks of Thin Slabs
,”
Int. J. Miner. Metall. Mater.
,
17
(
2
), pp.
159
166
.10.1007/s12613-010-0207-x
10.
Thomas
,
B. G.
, and
Ojeda
,
C.
,
2003
, “
Ideal Taper Prediction for Slab Casting
,”
ISSTech Steelmaking Conference
, Indianapolis, IN, Apr. 27–30, ISS-AIME, Warrendale, PA, pp.
295
308
.
11.
Zhang
,
X.
,
Fang
,
L.
,
Hu
,
H.
, and
Nie
,
X.
,
2017
, “
Determination of Metal/Die Interfacial Heat Transfer Coefficients in Squeeze Casting of Wrought Aluminum Alloy 7075 With Variations in Section Thicknesses and Applied Pressures
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
2
), pp.
1
9
.10.1115/1.4034855
12.
Chakraborty
,
S.
,
Ganguly
,
S.
,
Chacko
,
E. Z.
,
Ajmani
,
S. K.
, and
Talukdar
,
P.
,
2017
, “
Estimation of Surface Heat Flux in Continuous Casting Mould With Limited Measurement of Temperature
,”
Int. J. Therm. Sci.
,
118
, pp.
435
447
.10.1016/j.ijthermalsci.2017.05.012
13.
Yu
,
Y.
, and
Luo
,
X.
,
2015
, “
Estimation of Heat Transfer Coefficients and Heat Flux on the Billet Surface by an Integrated Approach
,”
Int. J. Heat Mass Transf.
,
90
, pp.
645
653
.10.1016/j.ijheatmasstransfer.2015.07.008
14.
Nawrat
,
A.
, and
Skorek
,
J.
,
2004
, “
Inverse Finite Element Technique for Identification of Thermal Resistance of Gas-Gap Between the Ingot and Mould in Continuous Casting of Metals
,”
Inverse Probl. Sci. Eng.
,
12
(
2
), pp.
141
155
.10.1080/10682760310001598580
15.
Vaka
,
A. S.
,
Ganguly
,
S.
, and
Talukdar
,
P.
,
2021
, “
Novel Inverse Heat Transfer Methodology for Estimation of Unknown Interfacial Heat Flux of a Continuous Casting Mould: A Complete Three-Dimensional Thermal Analysis of an Industrial Slab Mould
,”
Int. J. Therm. Sci.
,
160
, p.
106648
.10.1016/j.ijthermalsci.2020.106648
16.
Nam
,
H.
,
Park
,
H. S.
, and
Yoon
,
J. K.
,
2000
, “
Numerical Analysis of Fluid Flow and Heat Transfer in the Funnel Type Mold of a Thin Slab Caster
,”
ISIJ Int.
,
40
(
9
), pp.
886
892
.10.2355/isijinternational.40.886
17.
Park
,
H. S.
,
Nam
,
H.
, and
Yoon
,
J. K.
,
2001
, “
Numerical Analysis of Fluid Flow and Heat Transfer in the Parallel Type Mold of a Thin Slab Caster
,”
ISIJ Int.
,
41
(
9
), pp.
974
980
.10.2355/isijinternational.41.974
18.
Liu
,
H.
,
Yang
,
C.
,
Zhang
,
H.
,
Zhai
,
Q.
, and
Gan
,
Y.
,
2011
, “
Numerical Simulation of Fluid Flow and Thermal Characteristics of Thin Slab in the Funnel-Type Molds of Two Casters
,”
ISIJ Int.
,
51
(
3
), pp.
392
401
.10.2355/isijinternational.51.392
19.
Honeyands
,
T.
, and
Herbertson
,
J.
,
1995
, “
Flow Dynamics in Thin Slab Caster Moulds
,”
Steel Res.
,
66
(
7
), pp.
287
293
.10.1002/srin.199501126
20.
Li
,
B.
,
Tian
,
X.
,
Wang
,
E.
, and
He
,
J.
,
2007
, “
Influences of Casting Speed and Sen Depth on Fluid Flow in the Funnel Type Mold of a Thin Slab Caster
,”
Acta Metall. Sin. (Engl. Lett.
),
20
(
1
), pp.
15
26
.10.1016/S1006-7191(07)60003-9
21.
Zhu
,
L.
,
Wang
,
G.
,
Chen
,
H.
, and
Luo
,
Z.
,
2011
, “
Inverse Estimation for Heat Flux Distribution at the Metal-Mold Interface Using Fuzzy Inference
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
8
), pp.
1
6
.10.1115/1.4003743
22.
Wang
,
G.
,
Wan
,
S.
,
Chen
,
H.
,
Wang
,
K.
, and
Lv
,
C.
,
2018
, “
Fuzzy Identification of the Time- and Space-Dependent Internal Surface Heat Flux of Slab Continuous Casting Mold
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
12
), pp.
1
9
.
23.
Xie
,
X.
,
Chen
,
D.
,
Long
,
H.
,
Long
,
M.
, and
Lv
,
K.
,
2014
, “
Mathematical Modeling of Heat Transfer in Mold Copper Coupled With Cooling Water During the Slab Continuous Casting Process
,”
Metall. Mater. Trans. B
,
45
(
6
), pp.
2442
2452
.10.1007/s11663-014-0127-7
24.
Mirjalili
,
S.
,
Gandomi
,
A. H.
,
Mirjalili
,
S. Z.
,
Saremi
,
S.
,
Faris
,
H.
, and
Mirjalili
,
S. M.
,
2017
, “
Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems
,”
Adv. Eng. Softw.
,
114
, pp.
163
191
.10.1016/j.advengsoft.2017.07.002
25.
Vishweshwara
,
P. S.
,
Gnanasekaran
,
N.
, and
Arun
,
M.
,
2020
, “
Inverse Approach Using Bio-Inspired Algorithm Within Bayesian Framework for the Estimation of Heat Transfer Coefficients During Solidification of Casting
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
1
), pp.
1
11
.10.1115/1.4045134
26.
Chakraborty
,
S.
,
Ganguly
,
S.
, and
Talukdar
,
P.
,
2019
, “
Determination of Optimal Taper in Continuous Casting Billet Mould Using Thermo-Mechanical Models of Mould and Billet
,”
J. Mater. Process. Technol.
,
270
, pp.
132
141
.10.1016/j.jmatprotec.2019.02.032
27.
ANSYS, Inc.,
ANSYS Fluent Theory Guide
,
2018
,
ANSYS, Inc
., Canonsburg, PA.
28.
Camporredondo, S
,
J. E.
,
Castillejos, E
,
A. H.
,
Acosta, G
,
F. A.
,
Gutiérrez, M
,
E. P.
, and
Herrera
,
G. M. A.
,
2004
, “
Analysis of Thin-Slab Casting by the Compact-Strip Process: Part I. Heat Extraction and Solidification
,”
Metall. Mater. Trans. B
,
35
(
3
), pp.
541
560
.10.1007/s11663-004-0054-0
29.
Seyedein
,
S. H.
, and
Hasan
,
M.
,
1997
, “
A Three-Dimensional Simulation of Coupled Turbulent Flow and Macroscopic Solidification Heat Transfer for Continuous Slab Casters
,”
Int. J. Heat Mass Transf.
,
40
(
18
), pp.
4405
4423
.10.1016/S0017-9310(97)00064-1
30.
Hajari
,
A.
,
Seyedein
,
S. H.
, and
Aboutalebi
,
M. R.
,
2011
, “
Mathematical Modeling of Transport Processes in Funnel Shaped Mold of Steel Thin Slab Continuous Caster
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
6
), pp.
1
5
.10.1115/1.4003434
31.
Aboutalebi
,
M. R.
,
Hasan
,
M.
, and
Guthrie
,
R. I. L.
,
1995
, “
Coupled Turbulent Flow, Heat, and Solute Transport in Continuous Casting Processes
,”
Metall. Mater. Trans. B
,
26
(
4
), pp.
731
744
.10.1007/BF02651719
32.
Ushijima
,
K.
,
1962
, “
On the Air Gap Between the Billet and the Mold
,”
Tetsu-To-Hagane
,
48
(
6
), pp.
747
752
.10.2355/tetsutohagane1955.48.6_747
33.
Jayakrishna
,
P.
,
Chakraborty
,
S.
,
Ganguly
,
S.
, and
Talukdar
,
P.
,
2020
, “
A Novel Method for Determining the Three Dimensional Variation of Non-Linear Thermal Resistance at the Mold-Strand Interface in Billet Continuous Casting Process
,”
Int. Commun. Heat Mass Transf.
,
119
, p.
104984
.10.1016/j.icheatmasstransfer.2020.104984
34.
Santillana
,
B.
,
Hibbeler
,
L. C.
,
Thomas
,
B. G.
,
Hamoen
,
A.
,
Kamperman
,
A.
, and
Knoop
,
W. V. D.
,
2008
, “
Heat Transfer in Funnel-Mould Casting: Effect of Plate Thickness
,”
ISIJ Int.
,
48
(
10
), pp.
1380
1388
.10.2355/isijinternational.48.1380
35.
Vakhrushev
,
A.
,
Wu
,
M.
,
Ludwig
,
A.
,
Tang
,
Y.
,
Hackl
,
G.
, and
Nitzl
,
G.
,
2014
, “
Numerical Investigation of Shell Formation in Thin Slab Casting of Funnel-Type Mold
,”
Metall. Mater. Trans. B
,
45
(
3
), pp.
1024
1037
.10.1007/s11663-014-0030-2
36.
Vakhrushev
,
A.
,
Wu
,
M.
,
Ludwig
,
A.
,
Tang
,
Y.
,
Hackl
,
G.
, and
Nitzl
,
G.
,
2012
, “
Modeling of the Flow-Solidification Interaction in Thin Slab Casting
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
33
, p.
012014
.10.1088/1757-899X/33/1/012014
37.
Tian
,
X. Y.
,
Li
,
B. W.
, and
He
,
J. C.
,
2010
, “
Numerical Analysis of Influences of Casting Speeds on Fluid Flow in Funnel Shape Mould With New Type EMBr
,”
Int. J. Cast Met. Res.
,
23
(
2
), pp.
73
80
.10.1179/136404609X12535244
38.
Tian
,
X.-Y.
,
Zou
,
F.
,
Li
,
B.-W.
, and
He
,
J.-C.
,
2010
, “
Numerical Analysis of Coupled Fluid Flow, Heat Transfer and Macroscopic Solidification in the Thin Slab Funnel Shape Mold With a New Type EMBr
,”
Metall. Mater. Trans. B
,
41
(
1
), pp.
112
120
.10.1007/s11663-009-9314-3
39.
Koric
,
S.
, and
Thomas
,
B. G.
,
2007
, “
Thermo-Mechanical Model of Solidification Processes With ABAQUS
,”
ABAQUS Users Conference
, May 22, pp.
320
336
.
40.
Chakraborty
,
S.
,
Ganguly
,
S.
, and
Talukdar
,
P.
,
2020
, “
Determination of Thermal Resistance at Mould-Strand Interface Due to Shrinkage in Billet Continuous Casting—Development and Application of a Novel Integrated Numerical Model
,”
Int. J. Therm. Sci.
,
152
, p.
106305
.10.1016/j.ijthermalsci.2020.106305
41.
Hibbeler
,
L. C.
, and
Thomas
,
B. G.
,
2008
, “
Longitudinal Face Crack Prediction With Thermo-Mechanical Models of Thin Slabs in Funnel Moulds
,”
Sixth European Continuous Casting Conference
, Riccione, Italy, June 3–6, pp.
1
16
.http://ccc.illinois.edu/PDF%20Files/Publications/08_Lab_Metallurgia_Italiana_Hibbeler_Corus_reprint_post.pdf
You do not currently have access to this content.